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We develop a perturbation theory formalism for the theory of the Fermi surface 
in a Fermi liquid of particles interacting via a bounded short-range repulsive 
pair potential. The formalism is based on the renormalization group and 
provides a formal expansion of the large-distance Schwinger functions in terms 
of a family of running couplings consisting of one- and two-body quasiparticle 
potentials. The flow of the running couplings is described in terms of a beta 
function, which is studied to all orders of perturbation theory and shown to 
obey, in the nth order, n! bounds. The flow equations are written in general 
dimension d~> 1 for the spinless case (for simplicity). The picture that emerges 
is that on a large scale the system looks like a system of fermions interacting via 
a cSqike interaction potential (i.e., a potential approaching 0 everywhere except 
at the origin, where it diverges, although keeping the integral bounded); the 
theory is not asymptotically free in the usual sense and the freedom mechanism 
is thus more delicate than usual: the technical problem of dealing with unboun- 
ded effective potentials is solved by introducing a mathematically precise notion 
of quasiparticles, which turn out to be natural objects with finite interaction 
even when the physical potential diverges as a deltalike function. A remarkable 
kind of gauge symmetry is associated with the quasiparticles. To substantiate 
the analogy with the quasiparticle theory we discuss the mean field theory using 
our notion of quasiparticles: the resulting self-consistency relations are closely 
reminiscent of those of the BCS model. The formalism seems suited for a joint 
theory of normal states of Fermi liquids and of BCS states: the first are 
associated with the trivial fixed point of our flow or with nearby nontriviat fixed 
points (o r  invariant sets) and the second may naturally correspond to really 
nontrivial fixed points (which may nevertheless turn out to be accessible to 
analysis because the BCS state is a quasi free state, hence quite simple, unlike 
the nontrivial fixed points of field theory). The d =  1 case is deeply different from 
the d >  1 case, for our spinless fermions: we can treat it essentially completely 
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for small coupling. The system is not asymptotically free and presents 
anomalous renormalization group flow with a vanishing beta function, and the 
discontinuity of the occupation number at the Fermi surface is smoothed by the 
interaction (remaining singular with a coupling-dependent singularity of power 
type with exponent identified with the anomalous dimension). Finally, we pre- 
sent a heuristic discussion of the theory for the flow of the running coupling 
constants in spinless d> 1 systems: their structure is simplified further and the 
relevant part of the running interaction is precisely the interaction between pairs 
of quasiparticles which we identify with the Cooper pairs of superconductivity. 
The formal perturbation theory seems to have a chance to work only if the 
interaction between the Cooper pairs is repulsive: and to second order we show 
that in the spin-0 case this happens if the physical potential is repulsive. Our 
results indicate the possibility of the existence of a normal Fermi surface only 
if the interaction is repulsive. 

KEY WORDS: Perturbation theory; Fermi surface; quantum liquid 

0. I N T R O D U C T I O N .  R E S U L T S  

We consider a system of fermions at zero temperature,  with mass m > 0 
and positive density, interacting via a smooth,  short-range, rotat ion-  
invariant  pair potential  (described in an appropr ia te  grand canonical  
ensemble): hence, hard-core interactions are not  considered. The fermions 
will be usually suppoSed spinless: the simplification introduced by the 
absence of spin is, in the per turbat ion theory part  of this paper, unessential. 
We also treat, as an example, a spin case in a special one-dimensional  
model. 

We shall mos t  of the time introduce a second simplification, namely, 
we shall suppose that  there is a short-range cutoff eliminating scales shorter 
than some length scale P o l :  the best way to do this would be to imagine 
that  our  fermions are on a lattice. However,  such a regularization would 
not  be spherically symmetric and the resulting complicat ions would hide 
the conceptual  problems and our  proposals  for their solutions; hence, our  
regularization will be spherically symmetric  in space time. We think that  
the above simplification, a l though unphysical,  is unessential and that  the 
ultraviolet problem that  is eliminated in this way could in fact be solved 
and that  it has nothing to do with the theory of the Fermi surface, which 
is an infrared problem. For  this reason, in developing the general theory, 
we have not  even at tempted the analysis of the ultraviolet problem and we 
have fixed p o  I equal to the range of the interaction potential. We devote 
at tent ion to the ultraviolet problem only in the d =  1 spinless case with 
repulsive interaction. 

The basic question is to prove that, under convenient assumptions on 
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the pair potential, the interacting system has a well-defined normal Fermi 
surface. The first problem is to provide a definition of a normal Fermi sur- 
face: the guide is the theory of the free case (0 interaction). A Fermi surface 
with radius Pv (which in free systems is trivially related to the chemical 
potential or to the particle density; see Section 1) manifests itself in several 
ways. We consider the two-point Schwinger function in Euclidean space 
time(l~ if its argument (x, t) - ~ is led to ~ ,  it behaves in d-space dimen- 
sions as 

Spo(X, t)= z - l  f dkodk e-~(ko'+kx~ (k2) 
(2jr)d+1 _ iko + (k 2 _ p2 )/2m a -~o 

pdF-lOd f d d loIt--ifl-lOlXei~XpZ (0.1) 
icier,>1' (2rc)afiZ3 t~-+fl 2x-----~ 

where •(x) is a cutoff function taking out the ultraviolet part of the 
Schwinger function S, f2 a is the surface of the d-dimensional unit sphere 
and d a- lo) is the normalized surface element on the sphere, fl = p~/m is the 
velocity at the Fermi surface, Z =  1, and po  1 is a unit of length fixed 
arbitrarily. The parameter Z is introduced for later reference and will be 
called the Fermi surface discontinuity parameter (see Section3 and 
Appendix A). 

The reason for the latter name is that, if P0 = m, the integral in (0.1) 
over ko can be performed by residues and one finds 

a-1 
Soo(x, O-)=(--2~)afddkz(k2-p2<O)eik* (0.2) 

where X(x < 0) = 1 if x < 0 and vanishes otherwise, while the constant Z is 
identically 1; one would like to show that the presence of interaction simply 
replaces in (0.2) Z with Z-1Z +~,  with 2 regular, so that Z measures the 
jump at the Fermi surface; see ref. 9. 

As one can certainly imagine, this is by no means the only possible 
definition of a Fermi surface: in fact, in Section 4 we present another way 
of defining it and at the end of Section 5, after (5.33), still more ways. All 
the definitions agree in the case of no interaction. In the presence of inter- 
action they are formally equivalent. The proof of actual equivalence would 
require a lot of work: it is reminiscent of the problem of the equivalence of 
the ensembles in statistical mechanics. We shall eventually adopt the last of 
the possible definitions that we consider [see the an_alysis following (5.33) 
in Section 5] because it is the simplest to reach from scratch and, as we 
would like to believe, it is also the most fundamental, as it requires, to be 
stated, the introduction of the notion of quasiparticles, which is a basic 
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notion in low-temperature physics (but which so far has hardly received a 
mathematically useful definition; see, however, ref. 4). 

The results of this paper can be loosely stated (and they acquire a 
precise meaning after the notion of quasipartMe is introduced) as follows. 

1. We give a general perturbation-theory setup for the Fermi surface 
problem, with bounds on the beta function to all orders. This part of the 
work (Sections 6-12 and the nonheuristic part of Section 14) does not use 
in an essential way the spinless nature of our fermions and it can be 
trivially extended to spinning fermions. 

2. There is a lack of asymptotic freedom if d =  1. The beta function 
structure is inconsistent with a normal Fermi surface. We therefore intro- 
duce and discuss, for spinless systems, the notion of anomalous Fermi sur- 
face and build the new notions of effective potential and of beta function. 

3. We introduce a certain technical property which we conjecture 
[see Section 15, before (15.48)] to hold for the exactly soluble model of 
Luttinger. Unfortunately, we have not been able to show that it is a conse- 
quence of the exact solution of the model. Assuming the conjecture and the 
analyticity of the beta function near the origin (see below), we deduce, 
from the known properties of the exact solution by Mattis and Lieb of 
Luttinger's model, (25'26) that the anomalous beta function is identically zero 
in the spinless case. And we show that in turn this implies that the general 
short-range interaction leads to an abnormal Fermi surface identical, 
qualitatively, to the one present in the Luttinger model (Section 15). In this 
case we outline a discussion of the ultraviolet problem mentioned at the 
beginning of this section under the additional assumption that the potential 
is repulsive in the strong sense of being positive definite. 

4. The analyticity of the beta function in the d - - l ,  spinless 
(anomalous or not) or spinning case should be technically a consequence 
of the estimates in ref. 19: in fact, it is clear from our analysis that the 
analyticity properties of the beta function should be the same for our 
models and for the 2-dimensional Gross-Neveu model. Gawedski and 
Kupiainen (19) discuss the running couplings flow and the analyticity 
properties without defining exactly the beta function in the same sense of 
refs. 16 18, which we use here: we think that this was only an expository 
choice and we plan to study formally this technical point in a separate 
paper. 

5. For  spinning fermions we have no results beyond the ones in item 
1 above. We discuss briefly the d-- 1 spinning case (Section 15), pointing 
out some obvious problems, but providing no solutions. It is described by 
a map in finite dimension which contains resonances and therefore its 
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theory seems to lead quickly to well-known unsolved problems (small 
divisors, diffusion, etc.). This has something to do, we believe, with the fact 
that in the spinning d =  1 case a deltalike interaction with nonvanishing 
integral may be nontrivial and therefore boundedness of the running form 
factors is per se not sufficient to solve the problem. 

6. If d >  1 the results are not sufficient to show the consistency of the 
theory even to second order (in the sense of Section 5), even though we 
control in some sense the beta functional to all orders (Section 14). We 
hope that consistency to second order can be checked with extra work. We 
write down the equation which should be discussed, describing some of its 
elementary properties and its connection with the adopted Fermi surface 
definition. We also present some heuristic analysis of it (in the spinless 
cases), based on the idea that the flow generated by the beta function is 
governed by a function describing what we call the interaction between 
Cooper pairs. The analysis leads to a flow with no anomalous dimension, if 
the interaction is repulsive: thus, such spinless systems with repulsive inter- 
action would have a normal Fermi surface. 

We now sketch the logical structure behind the technical work. 
In the interacting theory, keeping the range po  1 of the interaction 

fixed, one has three independent parameters, namely the potential 2o 
(which is in fact a function), the mass m, and the Pv (or f l -  P r i m ) ,  which 
is the radius of the Fermi surface. The discontinuity has to be determined 
(when existing). Given the interaction potential 2o, and some bare values 
mo and pO of the mass and of the chemical potential, by definition we shall 
say that our system is normal and has particles of mass m, Fermi surface 
at PF, and discontinuity Z if the pair Schwinger function S m (cut off at Po) 
has the asymptotic behavior (0.1) or if some formally equivalent property 
holds. 

Formula (0.1), in the approximation expressed by the rhs, has 
remarkable scaling properties suggesting the use of renormalization group 
methods. In fact, the rhs of (0.1), and even the first nonapproximate 
expression generating it, will be shown to determine a representation of the 
Fermi field describing in Euclidean space time the free ground state with 
parameters Pv,  fl of the type 

0 
~/--+ _ _  n , +  ~,p~,e- E ~,;~,~ (0.3) 

n =  --o~ 

where O n is a field on scale 2-~po 1 in the sense of renormalization group 
(called the component on scale n or, in case of ambiguity, on scale 2-"po-1), 
and in fact it has a scale covariance property: 

~.t n ~ 9 d n / 2 d t O  
r  W 2 n ~ , 2 - n p F , f l  , n --+ - o o  (0.4) 
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We mention this property here because it is natural to study the scaling 
properties of the fields 0 n' • and to try to see what can be done with them: 
however, the discussion below and, in more detail, Sections 4 and 10 make 
it clear that, in fact, the scaling property (0.4), although correct, is not very 
useful and it is quite misleading. 

The decomposition (0.3) transforms the problem of computing the 
Schwinger functions into that of the theory of functional integrals of the 
exponential of an action V(0-+) with respect to the Euclidean Fermi fields 
0" (see Sections 1-4 and 6). 

The natural approach (renormalization group approach) would be to 
integrate successively the field components defining recursively the effective 
potentials v(h)(o(<'h) ), where 0 (-<h) is defined by the sum in (0.3) stopped 
at h~<0. One has to identify in V (h~ a relevant part depending on few 
parameters and an irrelevant part, the remainder. In our case the naive 
candidates would be a quartic operator in the fields which has the same 
form as the pair potential operator plus a quadratic part. 

In this way the relevant part V(L h) of V (h) takes the form 

A 'l'(~h~+'l'(<'h)l~/l(<~h)+jl'(~h) d~ dq dt 

+fAoh,. ,,,(<,h)+,,,(~h,--d~+~ ~h 

fA (,<h)+ ~?,0~.<h)- d~ (0.5) + ~h0~ 

where the coefficient of the 0 + 0  term has been defined as 2%h rather 
than vh for later convenience. It is, however, nontrivial to identify the 
relevant part contribution inside V (-<h). The coefficients of the relevant part 
are called running couplings or form factors (note that one of them is a 
function). 

The identification of the relevant part should be such that there is the 
possibility of expressing both the relevant and irrelevant parts of the effec- 
tive potential on scale h as formal power series in the higher scales, h' > h, 
running couplings: here the h's are negative, which is very convenient and 
not as confusing as it looks at first sight. Furthermore, one demands: 

1. If the running couplings are supposed bounded uniformly in h, 
then the sum of the absolute values of the nth-order coefficients of 
the above formal expansions should be bounded by C"n[, where n! 
is an estimate of the number of Feynman diagrams (with n ver- 
tices) in the classical perturbation theory; see refs. 1-9 and the 
brief introduction in Sections 14 .  This is usually interpreted as 
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. 

saying that there are no divergences in the theory, other than the 
ones associated with the running couplings themselves, when one 
tries to expand the effective potential (or the Schwinger functions 
which are trivially related to it) in powers of the 0-scale running 
couplings. 

If the expansions expressing the running couplings on scale h in 
terms of the ones on higher scales are truncated to any pre-fixed 
order p, then they generate a sequence of running couplings which 
is indeed uniformly bounded in h, at least for some suitably chosen 
nontrivial initial values. 

The first property will be called the existence of  the beta function of the 
theory and the second consistency to order p of perturbation theory. 

If, furthermore, the Schwinger functions, computed to the same order 
in the running couplings are such that, to the considered order p, they 
obey the asymptotic relation defined in (0.2) or one of the formally 
equivalent relations examined in Sections 4 and 5, one says that the Fermi 
surface exists to order p and is normal 

Usually this is obtained by showing that the effective potentials tend 
to zero in the considered order (asymptotic freedom). But this is by no 
means necessary: in fact, only some of the running couplings enter into 
(0.2). The theory of the Fermi surface seems to provide an example of the 
above nonnecessity. 

With the above program in mind, one starts computing the flow of the 
effective potential coupling constants to second order: one is deceived in 
discovering that no matter how one proceeds (at least, no matter how we 
proceeded), one finds that the effective potential has the annoying feature 
of trying to diverge. 

The latter property makes it impossible to proceed with the usual 
techniques~16 ls~ which are based on uniform estimates. The difficulty is a 
major one: it is basically linked to the fact that the problem has an intrinsic 
scale of length built in, pv l ;  the latter introduces oscillations in the 
integrands expressing the effective potentials, which produce cancellations 
compensating some of the divergences caused by the size of the effective 
potentials, the others being eliminated ultimately by using the Fermi 
statistics. This is, however, very difficult to control. Our solution has been 
to think of the effective potentials as interactions between new objects 
which are fermions with more structure than the original particles: we bap- 
tised them quasiparticles. They have more degrees of freedom and are 
related to the original particles, so that the Schwinger functions for the 
original particles can be computed from those of the quasiparticles by 
integrating them over the extra coordinates with suitable weights. 
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The redundance in degrees of freedom is reflected in a kind of gauge 

symmetry  which we shall repeatedly exploit: the knowledge that the physi- 
cal observables are necessarily expressible in terms of particle fields implies 
infinitely many identities and sum rules for the expressions involving the 
quasiparticles, quite analogous to the Ward identities of QED (e.g., see 
Sections 7, 11, and 12). 

The remarkable property of the quasiparticles is that the effective 
potentials between the new quasiparticles seem to be bounded functions 
and furthermore the formalism allows us to take advantage of the oscilla- 
tions of the integrands on a scale p{-X to show that also the integrations 
necessary to obtain the Schwinger functions of the quasiparticles can be 
performed and bounded uniformly. The divergence caused by the delta- 
function-like potentials, so troublesome in the formalism without the 
quasiparticles, does not cause problems because it is broken into a sum of 
many regular parts which can be controlled in the expressions of interest. 

The fact that in the end we get control of an effective potential which, 
in a formalism without quasiparticles, would look divergent (but very short 
ranged) is not very surprising, since, intuitively, a residual delta-function- 
like potential (with bounded integral) is essentially equivalent to a zero 
potential because the delta interaction is trivial (a property valid if d >  1 
and also, in the spinless case, if d =  1). 

The d =  1 case is a borderline case: the integral of the deltalike func- 
tion not only is bounded, but stays away from zero. This makes it harder 
to discuss the existence of the Fermi surface, particularly in the spinning 
case, as the delta interaction in one dimension may be nontrivial. 

We arrived at the quasiparticle picture (see Section 5) by studying the 
cancellations due to the oscillations of the propagators on the Fermi length 
p v  1 in two simple hierarchical models that we introduced: we do not 
reproduce here the labor performed on them because it would be a repeti- 
tion of what we present. We nevertheless stress that even in this case, as 
already in the cases of the scalar field theories, (35~ the analysis of a 
hierarchical model is very helpful and enlightening, and it has provided the 
essential key to this work. 

We think that the interest of the notion of quasiparticle that we intro- 
duce goes beyond the technical aspect: it seems to be a precise mathemati- 
cal notion which translates the phenomenological concept of quasiparticle 
originally due to Landau. They have strange properties which definitely 
distinguish them on a formal level from the Landau quasiparticles: they 
carry an intrinsic linear momentum (equal in size to the Fermi momentum 
Pv,  i.e., they live on the Fermi surface) much as a spinning particle carries 
an intrinsic angular momentum. And they tend to join into pairs with 
opposite intrinsic linear momentum to the point that all our intuition is 
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based on the idea of calling relevant only the part of the effective potential 
representing the interaction between what we have called Cooper pairs. It 
is only a part of the pair potential. 

As a final remark we wish to stress again that in the one-dimensional 
case there is no asymptotic freedom, because the effective potential does 
not tend to vanish, while in general dimension, as a potential between 
quasiparticles, it may go to zero, but not very fast (see Section 14). But in 
the quasiparticle language a potential which goes to a finite limiting value 
or even to zero too slowly corresponds, if interpreted as a pair potential 
between physical particles, to an approximate deltalike potential. Such a 
potential on scale h is an approximate delta function (see Appendix C) with 
width 2hpF 1, times a constant proportional to the size of the quasiparticle 
potential and to 2(d-l~h: hence its integral goes to 0, if d >  1, as h--* -o % 
but this is not fast enough to prevent the effective potential between the 
physical particles from diverging essentially as 0(2  h) in any dimension. 
This shows that in any dimension the quasiparticle notion seems essential. 
Furthermore, in more than one dimension one can have an asymptotic 
freedom mechanism only if one represents the interaction as an interaction 
between quasiparticles. 

The original preprint of this paper had a few lines missing where 
ref. 22 was introduced and comments on it were made: this was noticed by 
one of the referees, who asked in fact for more light on this point. We take 
the opportunity in the following lines to expand our original comments. 

The theory of the one-dimensional case should be compared to the 
vast literature; see ref. 22. The comparison is not easy, as the levels of rigor 
demanded of renormalization group approaches have kept increasing 
steadily. In ref. 22 the theory of the Fermi gas is developed in great detail: 
one of the basic ideas appears to be the same guiding us in Section 15; 
namely, one tries to make use of exactly soluble models to understand the 
properties of others, nonexactly soluble (this ~22) seems to be possible also 
in some models beyond the spinless case that we consider). 

The problem of defining the beta function without approximations 
(like the bandwidth cutoff with the assumption of constancy or smoothness 
of the couplings within the band) and to all orders is not really considered 
and attacked in ref. 22; the calculations are confined to the lowest orders, 
with the major exception of Fowler's theorem (see p. 220 of ref. 22) and the 
related conjecture on the conservation under scaling of a suitable combina- 
tion of coupling constants (which, however, can be regarded as constants 
only if the above approximations are considered). The analysis is made 
easier by neglecting completely the irrelevant terms and their contributions 
to the beta function. By contrast, the quantities that we call running 
couplings are, without approximations, constants (the identification of the 



550 Ben fa t to  and Ga l lavo t t i  

nonconstant part of the couplings used in ref. 22 with (some) of our irrele- 
vant terms seems fairly clear). We do not neglect irrelevant terms and we 
study the beta function to all orders of perturbation theory, making 
estimates of the coefficients. 

Our analysis can therefore be considered as an attempt at a more 
detailed understanding of the corrections that arise when one does not start 
with the approximations mentioned above and one does try to take into 
account the high orders and to put bounds on the beta function coefficients 
which are uniform in the cutoffs. In so doing we have been led to a precise, 
although apparently unconventional, notion of quasiparticles and to a 
more general theory (which is not restricted to one dimension) permitting 
the formulation of a renormalization group approach with a well-defined 
beta function [-which, unfortunately, seems difficult to study even to second 
order (see Section 14) when d >  1]. We have given an anomalous scaling 
interpretation of our one-dimensional results (going also through the 
analysis necessary to give a precise definition and bounds on an anomalous 
beta function): we plan to study the possible connection between the 
Fowler conjecture and our conjecture G = 0, in the quest of an algebraic 
proof for it: our conjecture also relies on the exactly known properties of 
the Luttinger model, and the argument used by Fowler to formulate it 
seems to apply in our case as well. The explicit check (which is of some 
interest while looking for a general proof) of the -vanishing of G to third 
order is being studied and in our context is more involved, if done by 
explicit calculation, because of the presence of the irrelevant contributions 
(which of course are not small). 

1. S Y M B O L S  

Fermions in a periodic box • c R a, with side size L will be described 
in terms of creation and annihilation operators ~/~-, qs where k = (2n/L)n, 
n = ( n l  ..... na) e Z  d. 

We choose units so that Planck's constant is h = 1 and introduce the 
following operators: 

~+ = L-a/2 ~ e+ik'Xrl~ 
k 

(1.1) 
N =  

k 

f dx dy 2o(X -- y) Sx+tP+ ~by~b; V= 
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where #, m will be fixed a priori and their combination PF = (2m#) 1/2 will 
be called the Fermi momentum, while 

k 2 2 2 
k - P v  (1.2) 

e(k) = 2----m - # = 2m 

will be called the dispersion relation. 
We shall call H the interaction Hamiltonian: 

H =  T +  V+ v o N + s  oT (1.3) 

and we shall say that 2 o is the interaction potential, v o is the chemical poten- 
tial, and So is the mass normalization. Strictly speaking, according to the 
usual terminology of statistical mechanics, the chemical potential of the 
Hamiltonian (1.3) would be # o = # ( l + c t o ) - V o  and the particle mass 
would be mo = m/(1 + Cto): hence Vo and eo are in fact related to the varia- 
tions of the chemical potential and of the particle mass compared to the 
reference values # and m, which are fixed a priori. 

When 2 o = ao = Vo = 0 the ground state of H is easy to find and it is 
simply given by 

I F ) =  1-I q~ IO)  (1.4) 
e ( k )  < 0 

where 10)  is the vacuum for the ~/-+ operators. 
For  s finite the ground-state properties as well as those of H can be 

deduced (obviously) from the Schwinger functions: 

Tr e - - (~9 - - t l )H~] l~r l e - - ( t l - - t 2 )HI] l  ~r2 ~[I ors t sH 
" r x  I r X 2  " " " r X s  e 

S(xl ,  tl, al,..., x,,  t,, as) = Tr e ~ /  (1.5) 

where 0 >~ tl ~> ..- i> ts/> 0, a i =  _ ,  and from the properties of such func- 
tions we can deduce the properties of the system at temperature 0-1,  too. 

In tile limit 0 ~ oo the functions (1.5) can still be used to describe the 
properties of the ground state. 

In this paper  we plan to consider (1.5) and its limit as 0 ~ oo: if So, 
Vo are suitable functions of 2o and 2o is small enough, we show that (1.5) 
can be given a formal perturbation-theoretic meaning defining a formal 
expansion for the Schwinger functions of a state of the (infinite-volume) 
fermion system whose structure is described by the Landau picture of 
quasiparticles. 

To impose Hamil tonian stability, we shall-suppose that 2o ~> 0, i.e., a 
repulsive potential; we shall also suppose that the potential has short range, 
i.e., it decays rapidly at 0% and that it is rotationally invariant. 
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2. CLASSICAL PERTURBATION THEORY 

The following t ime-dependent  fermion fields will be useful: 

t T ~  + - -  t T  0~,= L '/~ E e+'~x+~u'.~ e v,;e 
k 

(2.1) 

They define the imaginary time fields. 
Then, using the representat ion [-where Vo =- V +  v o N +  C~o T; see (1.3)] 

(2.2) 

we find that  the numera tor  of (1.5) becomes 

E + f Tr{e OTVo(t'l)--. V0(t',l_ 1) 0;1,"pl 

~b~;.t;~ .... +, ""  Vo(tp,+ ... +ps+~)} dt' (2.3) 

where Vo(t ) = e ' rVo  e tr and the sum is over integers Pl ,  P2 . . . . .  while the 
integral is over all the tj variables with J C P l ,  P l + P 2 , . . . , P I +  

' ' t '  P2 -t- "'" + P s ;  and tpt ,  tpI+P2'"" Pl+P2+'"+Ps are fixed to be t l >  
t2 > . . .  > ts ~>0, respectively; finally, the t' variables are constrained to 
decrease in their index j, and the sign _+ is plus if the number  of  Vo factors 
is even and minus otherwise. 

Since the produc t  of Vo's is an integral of a sum of products  of O+t 
operators  and since the T is a quadrat ic  Hamil tonian  in the 0 + operators,  
Wick's  theorem holds for evaluating Y r [ e x p - ~ T ( . ) ] / T r ( e x p - ~ g T )  and 
therefore it will be possible to express the various terms in (2.3) as suitable 
integrals of sums of products  of expressions like 

g+(~,  T) = Tr - a T  + - o r  e ~ x., ~ x'. ,,/Tr e 

g ( ~ , z ) = T r  - a T  + - -.~r e ~ x,t 0x' , t ' /Tr e 
(2.4) 

if { = x - x',  ~ = t - t ' > 0, which we combine  to form a single function: 

g({, z) = { , - z )  if T~<0 
(2.5) 

Then it is easy to see, f rom Wick's  theorem, that  the generic term in (2.3) 
can be expressed graphically as follows. 
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One lays down graph elements like 

X I , /  

I ) 
X 2 , t  

x , t  8 

X , t  X , t  
�9 ~ J ( 

X , t  0 

(2.6) 

symbolizing, respectively, 

X + + -;~o(X~- ~) ~x~,,~x~,~x~,~'x~,, 
+ 

- -  1~0 @x,  t if /x,  t 

(~o/2m)(ie + Pv) 0+,( io + Pv) ~ , r  

~x+t 

~'2t 

with PF being a vector of size PF (of any pre-fixed direction). We call the 
graph elements in (2.6) 1, 2, 3, and 4 (the last representing the final two 
elements), respectively. 

One should then draw n + s such elements so that the first n have a 
shape of the form 1, 2 or 3 with labels (x, t) attached arbitrarily to the ver- 
tices ("free labels") and the last s have a shape of the form 4 (representing, 
respectively, ~0~,t or Ox+,) and carry "external labels" (xl, tl) ..... (x,, t,). 

Then one considers all possible ways of joining together lines in pairs 
so that no line is left over unpaired and only lines with consistent orienta- 
tions are allowed to form a pair. 

To each graph we assign a sign cr = __ obtained by considering the 
permutation necessary to bring next to each other the pairs of operators 
which in the given graph are paired (one says also contracted), with the ~ -  
to the left of the associated ~+,  and then setting ~ = ( - 1 )  ~ if 7r is the 
permutation parity. 

To each graph we assign a value which is the integral over the free ver- 
tices of the product of the sign factor times the product of factors g({, ~) 
(or of some of its derivatives) for every line 2 with an arrow pointing 
from (Xl, t l ) t o  (X2, t2)with ~ - ~ - ( X 2 - - X 1 )  , "C=t2--tl ,  times a factor 
--2o(X 1 -- x2) for every wiggly line joining (xl, t) to (x2, t), times a factor 
--v o or %/2m for every vertex of the type with only two lines. 
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The propagator function g is given by (2.5) and can be represented as 

e "re(k) 
g({, r) = L - d  ~ e -,kg Z(Z > 0) 

k 1 + e-Oe(k) 

e - (,9 + z) e(k) ) 

1 + e  oe(k) Z( r<0)  

L ~ '  I f . oo (27C)  d ddk e ze(k)e-ik~(z(e(k ) > O) Z(r > O) 

-- z(e(k) < 0) X(Z ~< 0)) 

1 f e -i(k~ 
- - ( 2 r e )  d + l  dk~ -iko+e(k) (2.7) 

where )~ ("condit ion")= 1 if "condition" is satisfied and Z = 0  otherwise. 
The reason why r -- 0 requires the use of g -  is simply that such a case can 
only arise in the anomalous graphs in which a pairing occurs between lines 
emerging from points with the same time index. Disregarding sets of times 
of measure zero in the integral (2.3), such pairings can only arise by pairing 
lines representing operators ~+, ~ -  in the same Vo factor of (2.3); there- 
fore ~ ~ is always to the left of ~ and the propagator is necessarily 
g_( . ,  0). 

The sum of the graph values over all graphs yields the expansion for 
(2.3) up to a multiplying factor Tr e -~  

3. EUCLIDEAN F O R M A L I S M  

The numerator and denominator of (1.5) admit a concise representa- 
tion as a formal functional integral. 

For this purpose one introduces an algebra constructed from symbols 
O[ ,  ~ ,  with 4, t/e R a+ 1. The symbols are considered to form a basis out 
of which the algebra is constructed by assuming that the ~b~ satisfy the 
following anticommutation identities: 

{~br ~b~- } = 0, {0~, ~k,- } = 0, {0r ~O~- } = 0 (3.1) 

Following standard practice, the symbols ~ • are now used to denote new 
objects, which should not be confused with the fermion operators of the 
previous sections. (t~ 

The integration P(dlp) is simply defined by assigning the value of the 
integral of a monomial: 

f P(&b) ~b~l... O~ (3.2) 
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By definition, the value of such an integral is given by Wick's rule. One 
considers all the pairings, i.e., all possible ways of collecting in pairs the n 
symbols ~ in such a manner that no symbols appear in more than one 
pair and the two symbols of each pair have a different a: calling ~z the 
parity of the permutation on ~1 ..... ~ necessary to put the ~'s of each pair 
next to each other with the ~p- to the left, then one assigns to each pairing 
a value which is ( - 1 )  ~ times the product of factors g ( ~ -  ~') for each pair 
formed by pairing ~ with ~ , ;  the value of (3.2) is the sum over the 
values of all the pairings. 

From the analysis of the previous section it should be clear that the 
numerator in (1.5), divided by Tr e -~r, is given by 

i =  1 2x [O ,B]  

/ 1  8 + (3.3) 

and (3.3) has to be interpreted in the sense of formal power series in 2o, 

VO, 0~ 0 . 

The abstract objects ~ are called Grassmanian variables or Euclidean 
fermion fields, and the linear form defined by (3.2) on such an algebra is 
called an anticommutative Gaussian process. The theory of the integrals 
(3.3) is equivalent to the problem of giving a meaning to the formal pertur- 
bation series of Section 2. 

The analysis of the Schwinger functions is not very convenient. It is 
more convenient to work with the truncated Schwinger functions. The 
latter are related to the Schwinger functions by finite algebraic relations. 
The formal definition is in terms of auxiliary Grassmanian variables e l ,  
anticommuting also with the ~ -+ fields. One sets 

ST(x l  ff l,..., XsGs) 

CSex, 
i I 

(3.4) 

where 6 denotes the formal functional derivative, which, together with 
the logarithm and exponential, is defined in the sense of formal power 
series. Note that, however, S t ( x + ,  y - ) = - S ( x - ,  y+) ,  and we denote 
S ( x - ,  y + ) = S ( x -  y), as it plays a special role. 

822/59/3-4-2 
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A very convenient object is the generating function of the truncated 
Schwinger functions: 

.~(~): ~ ~, fdXl'''dXssT(xl[~l Xs~s) Gffxll'''~; ( 3 . 5 )  
s! '"" s = 2  a t ' - -as  

which is related to the notion of effective potential defined by 

e-  vo~(,) = f P(d~) e -  vo(~ + ~) (3.6) 

The relation is, if (ge) = g .  e-  and (ge) + = e + *  g', where the �9 
denotes convolution, g is the propagator in (2.7), and g' (x)= g ( - x ) ,  the 
following: 

- V~ff(ge) + (e+, ge ) = 5P(e) (3.7) 

(we learnt, in the scalar fields case, the above relation from L. Rosen). 
The above relations are formally trivial if one treats ~ P(dO). as an 

ordinary integral with respect to a measure proportional to 

d~ + d~b-exp { - f [ t ~ : ( ~ t + ( - A + p ~ ) / 2 m ] ~ b x  dx} (3.8) 

and proceeding to the change of  variables ~ + ge = ~. 
Of course the formal argument is meaningless as presented; however, 

if one writes the above calculations (i.e., the change of variables) as rela- 
tions between formal power series in the fermion fields, one sees that they 
are indeed valid. 

We can express Vefr(e) as a series like (3.5), thus defining kernels 
Vefr(Xlal ..... xs~rs), and among them the V ~ ( z - , z ' + )  = - Vef f (z -z ' )  will 
play a special role. 

In fact we see that the theory of the effective potential is equivalent to 
the theory of the two-point Schwinger function: 

S ( x -  y ) =  g ( x -  y ) -  f g ( x -  z) V~fr(z- z') g ( z ' -  y) dz dz' (3.9) 

and the property (0.2) can be translated into properties of the Fourier 
transform l~ofr(k) of the effective potential. The properties are: 

1. The effective potential has short range: i.e., I?efr is a smooth 
function in k. 

2. The effective potential vanishes on the Fermi surface: 

lT"(ko, k) = 0 if ko = O, [k[ = Pv (3.10) 
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. The expansion of ('(k) around ko=0,  Ikl = P v  has the form 

12~f~(ko, k) = ~ k2 - p~ - (iko + . . .  (3.11) 
2m 

- i k o + e ( k )  [ - i k o + e ( k ) ] [ - i k o + e ( k ) ]  

4. The coefficients c~ and ( a r e  equal: ~ = ( =  ff~. 

The above four conditions imply that 

1 ~ (  - i k  o + e(k)) 
S(ko, k) = + ... (3.12) 

i.e., (0.2) holds with z - l =  1 - ~  in a sense which depends on how good 
a control one has on the regularity properties of the ffmction I~efr(k ) near 
k o = 0, Ikl = PF (i.e,, on the Fermi surface). 

In perturbation theory one tries to find expansions for ~, ( a n d  for the 
value g = Ven-(0, Pv) in powers of )to, Co, Vo. The idea is that, given PF, m 
and given 2o small enough, one can express the parameters 9, g, ( a n d  
impose the conditions 

g(eo, Vo, 2o)= 0, ~(c%, Vo, 2o)= ((c%, Vo, 20) (3.13) 

to fix the two free parameters ct o, Vo (i.e., the bare mass and the bare chemi- 
cal potential). 

It is nontrivial and really remarkable that this can be achieved for- 
mally to all orders of perturbation theory in a sense which is not literally 
the above (which is incorrect), but in fact much better: the expansion is 
possible if ~7(~o, Vo, 20) is not really constructed as a function of c%, Vo, 2o 
for all their values near 0 (say). Rather, one uses only the parameters :%, 
2 o and determines v o as a power series in ~o, 2o so that the coefficients of 
the formal expansion of ~ in powers of c%, 20 vanish. In other words, one 
only defines i~ for the values of Co, Vo, 2o for which its value is 0. One finds 
that this is possible formally to all orders and determines uniquely formal 
series for Vo(~o, 2o), ~(c%, 2o), and ((~o, 20); one imposes subsequently that 
c~ = ( (which can be solved in the sense of formal power series to all orders). 

This shows that the perturbation series is possible only if the chemical 
potential is fixed at the right value. The similarity with the KAM theory of 
perturbations of Hamiltonian quasiperiodic motions is here striking. 

The work on the above perturbation theory is classical; see refs. 1-7 
and in particular refs. 8 and 9, The results follow again as a consequence of 
our work, which also provides bounds for the size of the coefficients of the 
expansion. 

However, the mentioned perturbation theory is unsatisfactory, as 
pointed out in refs. 11-13 and 15. 

In fact, one can easily identify special classes of contributions to the 
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functions 07(~o, 2o), ((~o, ,~o), ~o(~o, )~o), given by integrals of sums of 
geometric series: if summed formally, they become divergent, although the 
term-by-term integrals are convergent. The mechanism is the same as that 
of the integral 

/~~ log Ixl dx = (3.14) 
n:o 1 + f12o log Ixl -a dx 

i.e., we see that the integrals are finite order by order, but their formal sum 
diverges at least if/32o < 0. This shows that a correct perturbation theory, 
even if only formal, cannot be confined to the proof that one has finiteness 
order by order. (5) 

On the other hand, the above situation is typical of the renormaliza- 
tion group approaches. We expect that there should be a notion of 
running form factors, which we denote vh = (2h, vh, c~h, ~h), and that all the 
interesting quantities should be expandible in a formal power series in vh. 
The power series is possibly even convergent if Ivhl is small enough for 
all h. Then the problem becomes that of controlling the dependence of vh 
on h as functions of the parameters of the theory (~o, Vo, ).o): one would 
like to prove that they stay uniformly bounded and small, at least if 2o is 
chosen small enough and the others conveniently. 

4. E F F E C T I V E  P O T E N T I A L S  

The basic tool to produce estimates on the graphs of perturbation 
theory is the multiscale decomposition of the Euclidean fermion fields. 
Fixing arbitrarily a momentum scale Po, it is generated by the following 
identities, starting from (2.7): 

dko ddk exp [ i ( - k o t -  kx)] 
g(x)=f  ~-s dTT _iko+e(k) 

dk o ddk exp[i( - k o t -  kx)] f [ iko + e(k ) ] = J  (2n)d+ 1 k2+ e(k) z 

= ~ i p0~2~2~ d~f dk~ 
-oo (2n)d+ 1 Jpo22 2n-2 

x ( e x p { i ( - k o t -  kx) - c~[ko 2 + e(k) =] })[iko + e(k)] 

+ d~ .I (2n)d+ 1 

x (exp { i ( -  kot - kx) - ct[k~ + e(k) 2 ] } )[-iko + e(k)] 
1 

- ~ gn(x) (4.1) 
--oo 
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where x = (x, t) and the functions ~n(x) have simple scaling properties, if 
n ~< 0. In fact, 

~,n(x,t)=2"g~(~,r)sinpvlXl +22"POg~(~,Z)cOSpvlX[, d = 3  
Pv Ixl Pv (4.2) 

~(X, t) = 2ng~(~, r) COS pvX -- 2"g,~(~, Z) sin pvx, d= 1 

where { = 2npo x, r = 2npo t, and, if n~<0, 

lSPSr g~(~,z)l<~2n(p+lrE)G~({,v)pp+lrt+lp~ x, 7=s,c  (4.3) 

where f l=pv/m and G~, which depends on p, r, q but not on n, is 
uniformly bounded and decays at ~ faster than any .power of its 
arguments. 

Furthermore, g~, gC are holomorphic in {, r and admit a bound with 
G~ decaying exponentially fast at ov for ~ ,  r in a complex plane strip of 
pre-fixed size, and with a decay rate bounded by a quantity that also can 
be arbitrarily pre-fixed. 

See Appendix A for our choice of g', g~ and for a detailed check of the 
above statements. 

We shall often choose units so that fl =velocity at the Fermi sur- 
face = 1 and h = 1: we call such units natural and in such units the dimen- 
sion of 2 is an inverse length. 

A convenient and natural choice for Po is to fix p o ~ = r a n g e  of the 
interaction potential: the latter will be supposed to have the form 2 ( x ) =  
p0a2(po x) with ~. having range 1. 

We can use (4.2) to represent our Euclidean fermion fields as sums of 
other independent Grassmanian variables: 

1 

~ , , =  Z f ~x,,,o,-~b("> eiPv~176215 do) (4.4) 
n =  - - c o  

where the propagator between the fields Jb/~/ and ~b (~)+ is given, if "r x , / , o )  T x ' ,  l',O~' 

= (x - x') p02" and v = (t - t') 2"po, by 

=a(to-o)')  ~. 2 ~ F ( 2 ~ P ~  d = 3  (4.5) 
=c.s L\ Pv/ A 

2"(5(o)-o3')g,(~,z,o))=f(o)--o)')2"[g~(~,z)--i~og~(~,z)], d = l  

with e (c )=  1 and ~(s)=0,  and 6 is the delta function relative to the 
measure de) defined by 

do) = 8(Io~l - 1) da m (4.6) 
O d i n [  d-1 
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where s d is the surface of the d-dimensional sphere, i.e., 6 is defined on a 
test function f by 

f 6(o - o ' )  d e '  f ( o ' )  - f ( o )  (4.7) 

If n =  1, the fields ~h (1) are given an indecomposed propagator: (4.2) still 
holds, but (4.3) holds only outside a neighborhood of the origin (because 
there is no ultraviolet cutoff in gm). 

Formula (4.5) can be read in the jargon of the renormalization group 
as saying that the dimension of the fields r is 1/2, independently of d. 

The d independence of (4.5) reflects the fact that the particle 
propagator (4.1) has a singularity on the Fermi surface which has codimen- 
sion 2 [1 (spatial)+ 1 (temporal)]. The asymptotic scaling and the sym- 
metry between space and time in the quasiparticle propagator reflects the 
nature of the singularity in the radial direction, linear in ko and ] k l -  PF 
(the latter is the variable called h in Appendix A). 

In checking (4.4) and (4.5), one uses, for d =  3, the identities 

s i n  Ixl f ,  
- | do) e - i ' ~  

Ixl J 
cos Ixl = f (1 - iox)  do  e - i " ' '  (4.8) 

and similar ones if d = 1. 
Asymptotically, as n + -oo  one has, for d =  1, 3 [see (A.9)], 

g,(r ~, o)  = c . ( ~ -  i~ ~r ~o(~: +/~ :~:) (4.9) 

where [see (A.10)] 

X e z/4~dc~ t~-uf2uPdv-~P~ (4.10) 
7~ = f,/4 ~2, "-~d-- 2(2re)d+, fl 

It appears that the fields dJ (') are naturally associated with the length r x , t , ~  

scale 2 "po 1. 
The following notation will be used: 

N 
~ / ( ~ <  N)o"  __ r _- • O~ ")~ (4.11) 

n =  oo 

and, if A = f2 • [ --T,  T], we define the effective potential V (N) o n  scale 
po12 N with ultraviolet cutoff U~>0 as 
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exp - v(N)(I]I ( ~N)) 

= f P(dO(U+ 1~)... p(d0(~,~) 

d d. dt x e x p  

where 2o will be called the potential, Vo the chemical potential, ~o the mass 
normalization, and G0 the discontinuity parameter. 

Eventually one shall only be interested in the choices of v0, % permit- 
ting one to interpret the state of the Fermi system as a state with a Fermi 
surface at Pv (a priori prescribed) on which Landau quasiparticles move 
with a given mass m, and one wishes to take .~o = 0 (otherwise one would 
lose the physical interpretation of the theory). 

The propagators of the various fields obtained from the fields ~b" in 
(4.4) or (4.11) by taking summations over n between various extremes will 
be denoted by appending to g or ~ subscripts like ( ~< h) if the extremes are 
( - 0 %  h), or (~>h) if the extremes are (h, 0), or (h, h') if the extremes are 
both finite. 

As mentioned in the introduction, we shall fix the ultraviolet cutoff 
U = 0, i.e., we fix it at scale Po  ~. The effective potential on scale h generates 
the truncated Schwinger functions S(~>h) of a theory with infrared cutoff at 
scale po12 -h. 

In the free case the evaluation of the function S(>~h)(x, y) at points 
2 hx o, 2 hy o (i.e., on scale po12 h) leads to (fixing d =  3 as an example) 

S~>~h)(Xo, Yo) = 2-2hS(>~h)(2-h(X o -- YO)) 

= s in(pv2-h Ix0-- Yol) g~h . . . .  ling)(Xo - -YO)  

+c~  2-h  IXo-Yol) gi'~h .... li~g)(Xo-Y0) (4.13) 

where, if a = s, c, we have defined 
o 

g~>h .... line~(X) = Z 22('-h~g~( 2~ hpOX) 
n = h  

+oo 

h ~ ,  ~ ~ 22qg~(2qPo x) 
q- -O  

--= gs~aling(X) (4.14) 
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so that [-see the asymptotic formulas in Appendix A, (A6) (A10)] 

~'~37~pF 7scaling(X ) f< t/IXI' O'~- S 
g s ~ a l i n g ( X )  - -  2(2n) 4/3 [/3 ', a = C 

+oo 

])scaling(X) = E 22qPZTo(2qPox) (4 .15)  
q=0 

= 4 exp(-p~xZ/4) 
x2 if  x 2 = t 2 + x 2 / 3 - z  

Hence we see that if x 2 is fixed (=  1, say), we can read from the 
leading behavior of S~>h)(x) as h ~ -oo  the value of the Fermi radius Pv 
and the particle mass m: the first is directly given by the period of the 
oscillations in space (i.e., 2n2h/pv in our rescaled units) [see (4.13)], and 
the second is deduced from/3 (/3 = pv/m) [see (4.15)]. 

The above analysis shows the possibility of defining the Fermi surface 
and the particle mass via the analysis of the effective potential on scale h: 
using (3.9), one could require re(h) to have the properties necessary to ~eff 
imply that the S~>~h)(x, y), defined by the rhs of (3.9), indeed have the 
asymptotic properties described by (4.13)-(4.15). 

This is not, however, our choice: in our opinion the Fermi surface and 
the mass are more naturally associated with the new concept of quasipar- 
ticles that we introduce in the next section and that we identify with the 
well-known phenomenological notion of quasiparticle introduced by 
Landau (see ref. 15). 

5. QUASIPARTICLES.  M E A N  FIELD THEORY A N D  GAP 
EQUATION.  DEFINIT ION OF FERMI  SURFACE 

We now come to the problem of defining what we shall adopt as the 
primary definition of Fermi surface and quasiparticle mass. 

The previous formalism suggests a radical change in point of view. The 
case d =  1 is clearest and we treat it first; we keep, however, the general 
notation for later reference (hence, if d = 1, the ~ d~  will be the average 
over o~ = + 1, etc.). 

We imagine a system of fermions characterized by an intrinsic linear 
momentum pFO~ and external linear momentum k. The intrinsic linear 
momentum should be thought of as the linear momentum analogue of the 
spin. Such particles will be described by fermion fields r with 
propagator ~(o~ - o~') g(x - x', t - t', o~), where 

t , ~ ) = ~  i~kx+koO da+lk 
g(x, 8(k, oJ) (27z) d + l  (5 .1)  
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The new fermion variables may be used to represent the fermion 
variables of the previous sections as 

+- = f d e  e +- ipF,oX~ + 
x ,  l x ,  t ,  o,~ (5.2) 

The function e(k, o )  has to be such that 

g(x, t) 

Keeping 
e(k, o))= 
to check 

dd+lk e-i(k~ - - f  doe-ipv'~ t, O) (5.3) 
= f (2~r) d+l - i ko  + ( k  2 - p2)/2m 

the restriction d =  1, an elementary calculation shows that 
- iko + f lok  + O(k:)  as a consequence of (A6)-(A10). It is easy 
that there are oo-many choices of e(k, co). Every choice of the 

function Z in Appendix A, for instance, provides a different e(k, o)  still 
satisfying e(k, r  O(k2). All choices agree to first order 
near the Fermi surface k = 0 .  We shall fix our choice by using the 
propagators of Appendix A. 

This means that the free fermion system in a ground state with Fermi 
momentum at PF can be considered as a system of quasiparticles in the 
vacuum carrying an intrinsic linear momentum equal to a Fermi sphere 
momentum. The dispersion relation is almost linear in the sense that the 
system on large scales, i.e., k small, will show a dispersion relation essen- 
tially identical to q (k )=  okfl: this property seems to remain valid even in 
the presence of interaction and this is the main result of the analysis of the 
coming sections, which are developed by letting intuition be led by the idea 
that the quasipartieles are to be taken seriously. 

The case d =  3 is discussed similarly, but for reasons that are made 
clear below, we only consider it when we have an ultraviolet cutoff at P0. 
The propagator g ( x - x ' ,  t - t ' ,  o)  will be therefore defined as [see (4.5), 
(4.6)] 

0 

g(x, t, o ) =  ~ 2hgh(x, t, O) (5.4) 
h =  --oD 

Using the work of Appendix A, one easily checks that (5.4) can be put in 
the form (5.1) by setting 

e(k, o)  = - ikoa(k  ) + b(k) + rio" k[c(k)  - ik 0 d(k)] 

with a, b, c, and d functions of k 2+f12k2 growing very fast as k ~  oo 
(exponentially, because of the ultraviolet cutoff). The difference between the 
d =  1 case and the d >  1 cases is not so much in the introduction of the 
ultraviolet cutoff (which could be easily avoided by extending the sum over 
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h up to 1), but rather in the fact that the e(k, ~), even in the absence of 
an ultraviolet cutoff, would have to be really different from -iko+ 
f i~ .  k + O(k2). The main feature of e(k, o~), common to d =  1, 3, is that 
1/J~/[, with t /=Ree ,  is not integrable at 0 over ko, k; it is, however, 
integrable at oo with respect to k (but, if d = 3 ,  only because of the 
ultraviolet cutoff). 

The leading singularity at k = 0 is easy to evaluate from Appendix A, 
(A7)-(A19), and it is 

e(k, ~) = [ -  iko-b f l~"  k )(k~ + flz(~ " k ) 2] 1 (k2.+_ f12k2)2 (2fl)-Rpv2 

We can generalize our previous problem into that of studying 
Euclidean Fermi fields with interaction 

f dx dt d~l do~2 exp[ipv(~l --~2)X] v(O)= 

( ~:~ (2ip~lo~2d_p~2A))t~x,t,o,2 
• Vo+5- - m 

+ f dxdydtfl~d~176176176176 
J 

• (5.5) 

We call (5.5) an interaction between the Euclidean quasiparticles with 
internal momentum O~pv and position x: it is obtained by considering the 
argument of the exponential in the rhs of (4.12) and by replacing the ~ f  
fields via the (5.2). 

One cannot say that such objects are real particles, as they only arise 
as an artificial device similar to the device of decomposing a field into 
scales. But we can pretend that they are real because we can infer from 
their properties those of the system, hence those of the true particles: the 
name is chosen because they seem to enjoy properties analogous, in some 
respects, to those of the quasiparticles used in the Landau theory of Fermi 
liquids. 

Before giving the definition of Fermi surface in terms of the quasipar- 
ticles (see Definitions 1 and 2 below), we try to substantiate our interpreta- 
tion of the above remarks on quasiparticles by showing that the mean field 
theory can be easily rephrased in our formalism, and very naturally so, 
leading to self-consistency equations of the BCS gap equation type. 

We can think of the Euclidean quasiparticles as described by the 
formal fermion integration proportional to 

P(d~p) = {exp--f~(k,~)O~o,~O~o, dtodk}d~p + dO- (5.6) 
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where an ultraviolet cutoff Po is introduced to avoid dealing with 
ultraviolet problems. 

Using the formal expression (5.6), it is possible to build a mean field 
theory and to draw some analogy with the BCS model. 

Let 

)~(o~; co') - [,~(pv(fll - co')) - / ( p v ( m  + ~o')]/2 

where 2 is the Fourier transform of some rotational invariant effective 
potential 2 (not to be considered as directly related to the initial potential), 
and define 

Vncs = - f  dxdt  f do, din' 2(~o;m')A-lOx+t . . . .  ,, ~lx,,,,o'O~,,.-o,' (5.7) 

and try to analyze S (exp-V~cs )P(dO) .  Here A is a normalization 
constant formally equal to 6a_1(0) if 6a_~=6 is as defined in (4.7): it 
disappears from the calculations eventually and one should think of it as 
defined in terms of some cutoff parameter. 

The idea behind the model (5.7) is that it represents an effective poten- 
tial describing the system, after integrating out the ultraviolet modes and 
on some very large scale 2 hpol: then 6d 1(0) is (2-hPol)  d 1 SO that 
A -1 = 2h(d- 1)pod- ~. 

One tries to find the Schwinger functions for (5.7) by assuming that 
one can replace ~.t,o,,~,t ,- ,o, by its average in the distribution const. 
(exp - VBcs) P(d~l), setting 

(~x,t,,,, ~x,t,o,,,) = 6(0~' + co") v(o~') (5.8) 

where V(o))_= - V ( - o ~ )  is considered as unknown and to be determined 
self-consistently by using 

6(m + co') V(m) = S e -  e"cse(d$) ~.,.,o $~.,.,~_, (5.9) 
e- v"csP(d~) 

with 

1 (" t" 

ffBcs = = l d x d t | d o ~  w + + - I- (~) Ox, , , , oOx , , , - , ~+w(o~)  @2, ,_ . , t )~ , , , , . ]  (5 .10)  
Z J  J 

where, regarding 2(~; ~ ' )  before (5.7) as defining a convolution operator 
K, the function w ( o ) -  - w ( - c o )  is defined by 

w(~o) = f  v(co') ;.(o~; co') do~'- (KV)(co) (5.11) 
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The best way to evaluate (5.9) is to make use of the formal functional 
integration representing P(dO) [see (5.6)] and thus considering, for 
(kh >0,  

-(wO~+~O +~, . + wO =~,_o,~,~)  + (5 + O~+~O;,o. + ~ O +~, ~ 0 - ~ ,  ~) 
(5.12) 

with ~+ - e ( k , o ) ,  e = e ( - k ,  - o ) .  
The (5.12) can be rewritten, dropping at places the r dependence to 

shorten the notations, in terms of 

O[,,, = c(k) q)~,~,,o + s(k) + ~O l,k, co, 

+ O-k.-o ,  = - s ( k )  ~o(,k,,. + c(k) ~o + , 1,k, to O-k, o, = - s ( k )  ~o~,k,,o + c(k) q)~,k,o~ 

(5.13) 

with (k)l > 0 and s, c are defined, if t / -  [s(k, e~) + s ( - k ,  - to) I /2 ,  by 

t(k) = s(k) 2t(k) co [c(k) 2 - s(k) 2] w - 2qc(k) s(k) = 0 
c (k ) '  1 - t ( k )  2 t I ' 

(5.14) 

Note that e+ = - i k o A ( k ,  o~) + A'(k,  ~ )  with A = a(k) + flcokd(k) and A' = 
b(k) + / ~ k c ( k ) .  

We find that (5.12) becomes, for (k)l >0,  

f eo= c2e( k, co) - s2e( - k, - o~ ) + 2wcs 
eo(k, ~ )  ~o~ q~o + el(k, 0.}) 

el = cZe( - k ,  -o~) - sZe(k, co) + 2wcs 

(5.15) 

i.e., So = - i k o A ( k ,  o~) + B(k, o~), el = ikoA(k, o~) + B(k, o~), with B(k, o~) = 
( c2 - s2 ) t /+  2wcs, and we can easily compute 

AV(r (0x,,,,~0x,,, o,) 

_ f  (2g) a+dk 1 [s(k '~ '})c(k 'o '})({(cgO..kco(~OO.k~o)-I-  . . . .  { q) 1,k,o~ ( ~ 0 1 , k , o ~ ) ) ' ] +  

f dk s(k, c o ) c ( k , o ) ( 1  1 ) (5.16) 
- - A  (2~)a+ , ~ )  ~ ~l(k, f.O) 

One can see from (5.14) and (5.15) that the sign of Bsc is the same as that 
of w, so that (5.16) becomes 

v(o~) = - f dk w(o)  IB(k)l (5.17) 
(2re) d+l [t/2 + w(o)2] '/2 k2A(k)  2 + B(k) 2 J 
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In (5.17) the large values of k do not matter too much because the func- 
tions A, B, ~1 diverge fast enough for summability. Therefore for d =  1, 
using A(0) = 1 + O(k2), t/(k) =/3~ok + O(k 2) and assuming for the purpose 
of an example 2(co, co') = coco'Vo and if V(co) = coV, w(oJ) = Vo Vco, the self- 
consistency relation (5.17) for V becomes 

1 c dk 1 

J Vo 4n (t/2 + V 2 Vo )2 1/'2 

~_ _ f d k  1 
4n [(k s - p~-)2/am + V~) V2] ~/2 (5.18) 

and the rhs has been obtained by changing variables from k to k + pvCO. 
Equation (5.18) is formally the welt-known BCS gap equation (14) (usually 
written calling V2Vg=-A). Equation (5.18) is a self-consistency equation 
which can be solved under the hypothesis that the potential is attractive 
[i.e., 2 ( x -  y)~< 0, implying that V0 < 0] and not soluble if it is repulsive 
[i.e., 2 ( x - y )  ~> 0]. 

For d >  1 the situation is very similar and one expects that the 
self-consistency equation will be soluble if the potential is attractive: rather 
than performing a general analysis of (5.17), we show the truth of the 
above statements in some special cases. The basic remark is that 

(dk/]~l])(IBI/kgA 2 + B 2) diverges near k = 0. 
Consider first the 6-model: 

2(co; o ' )  = V 0 �89 r  6(co + ~ ' ) ]  (5.19) 

corresponding to a potential with Fourier transform such that 
2 (pv (O~-o ' ) ) -Vo 6 (OJ-o ~ ' ) .  This is a singular but interesting case; the 
self-consistent V is easy to calculate explicitly and, if mz denotes the z com- 
ponent of co with respect to a pre-fixed z axis, it is V(o~)= [sign(~%)] V, 
with V being a constant defined by the equation 

1 d4k 1 ]B(k)t 
Vo f (5.20) (27~)4 It/2 _{_ ( VVo)2] 1/2 k2A (k)2 -4- B(k) 2 

again very similar to the BCS gap equation, and which has nontrivial 
solutions in the case V 0 < 0, i.e., if the interaction is attractive. 

A second interesting case is the P-wave model in which the Fourier 
transform of the potential is , ~ ( p v ( c o - o ' ) ) = - 3 ( t o - t o ' )  2 V1/2, so that 
2( to; to ' )=3oto 'Vl ;  in this case we find that w(to) is a P-wave function 
w(o)  = 3oz VV1, where V is the (unknown) coefficient of the PI Legendre 
polynomial in the Legendre expansion of V(O): 

1 sin ,9 &9 d4k 3 cos 2 0 
(2n) 4 (t/2 + V2V 2 cos 2 ,9)1/2 A(k)  2 + B(k) 2 
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which again admits a solution only if V1 < 0, i.e., only if the potential is 
attractive. It is the extension to P wave, in our spinless mode, of the gap 
equation. Once V1 is determined, the other coefficients of the Legendre 
expansion of V are trivially determined by (5.17), whose rhs becomes a 
wholly known quadrature. 

More generally, one should remark that the function 2(~o; ~ ' )  can be 
expanded in Legendre series: 

2(o~; co')= ~ (2l+ 1))~lPr(~'co') (5.22) 
l = o d d  

and one easily checks that the condition 2 ( x -  y)>/0 implies that 2t >~ 0. In 
fact one regards the 2(o~; ~o') as a convolution kernel K on the odd func- 
tions on the sphere and checks that its quadratic form can be written as 

(f, Kf)-=f R(xllFf(x)lZd3x>~O if Ff(x)=fe'pv~'xf(cold~ (5.23) 

on the other hand, 2l are just the eigenvalues of K as a convolution kernel 
(which has the spherical harmonics as eigenfunctions). 

The gap equation (5.17) for a model with finitely many waves 
2 N +  1 

2(~; co')= ~ (2l+ 1) 21Pl(~'~o')  (5.24) 
l = o d d  

becomes, as it is easily checked, a system of N equations and N unknowns 
which determine the first N Legendre series coefficients of V(co); the other 
coefficients (infinitely many) are trivially determined in terms of the first N. 
The reason for this simplification is that w = KV, and K in this case has 
N-dimensional range spanned by the first N odd Legendre polynomials: 
hence the rhs of (5.17) is wholly known once the first N components of V 
are known (because KV= w depends only on them). 

We should therefore expect that perturbation theory can be consistent 
only if the interaction is repulsive and this will be an important guideline 
in the coming analysis. Furthermore, in some sense only the components of 
the quasiparticle potential corresponding to waves that appear in the initial 
interaction should be relevant: they are the ones that determine the 
self-consistent solution. 

The above analysis shows, in our opinion, the interest of the new 
notion of quasiparticle. Hence we are motivated to provide a definition of 
the Fermi surface in terms of quasiparticles. 

We simply look at the truncated Schwinger functions S(~>h) considered 
at the end of Section 4, with ultraviolet cutoff at Po and infratred cutoff at 
2hpo, for the ordinary fields and defined with the obvious changes for 
quasiparticle fields. 
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In the free case they can be easily computed from (5.1) and from the 
analysis of Appendix A. 

We investigate the Schwinger function S(>~h)(x-y)  in the presence of 
interaction in terms of the free and interacting quasiparticle Schwinger 
functions g(>~h)(x- y, co)~(o~-to ')  and S(>~h)(x, o~, y, o~'). In this case the 
function S(~>h) is defined in terms of the effective potential via the obvious 
generalization of formula (3.9): 

S(>~h)(x, o~, y, ~ ' )  

= g(~h)(x - y, co) 8(o~ -o~ ' )  - f & dz, eiPr( 

x g(>~h)(x-- z, o~) V(h)~z ' err, , CO, z ,  0~') g(>~hl(z -- y, CO') (5.25) 

where the coefficient exp ipv(o~z-m'z ' )  is extracted for convenience, as 
suggested by (5.3), from the kernels defining the effective potential, which 
we introduce via the relations 

(~) f 
e v~(O)= p(dO(h+l)dO(h+2). . . )  

x e x p [ -  V(~ + O(h+ ~ + 0(h +2) �9 �9 .)] (5.26) 

We now suppose that 

V(h)~z. ' os = 2%h0(z z') + ~h6(z--z')(iflo~'~' A'/2m) eft t ~ f/)~ Z ,  - -  - -  

+ ~ h ~ ( z - z ' ) 8 ;  + w'h(z, z') (5.27) 

where 8;, ~', and A' are differential operators acting to their right on the 
z' variables; and we see that the reconstruction of the Schwinger function 

S(>~h)(x, y) = f { e x p [ -  ipv(o~x - co'y)] } S(~h)(x, o~, y, o~') d e  dos (5.28) 

leads to 

S ~ ( x -  y)  

g(>~h)(x- y ) -  f dto' dz' g (>~)(x -  z') e x p [ - i p v o s  

x [-2%h + O ~ h ( i f l o ~ ' O  - -  A/2m) + ~8~] g(>~h)(z'-y, co') + ... 

= g ( > ~ ) ( x - - y )  

- f g(>~,)(x -- z')[2hv~ + Chat + %( --A v- pZ)/2m] g(>~)(z '--y) dz' 

(5.29) 
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and in Fourier transform 

~>~)(k) = &>~h)(k)-- &>~)(k) g~>~)(k) 

x [ 2 h V h + r  (5.30) 

But by our construction g(>~h)(k) has a singularity, at the Fermi surface 
when h ~  -0% i.e., for k0=0 ,  ]kl =Pv:  

1 - e x p { - 2  2h[k2+ (k 2 - p z / z m ) 2 ] }  (5.31) 

- ik o + (k 2 _ p2v/2m ) 

Hence we see that the singularity at the Fermi surface, i.e., at ko = 0, 
[kl = Pv, is not changed if 

v ~ = 0 ,  ~ ~ = ~ o o  (5.32) 

provided v h ~ 0 at least as fast as 2 ~h, e > 0. 
This can be interpreted as saying that the S(>~h) function has the same 

behavior at oe as the corresponding function in the free case, provided the 
remainder gives a less singular contribution; this happens if the contribu- 
tion of the remainder Wh(Z--Z') to the effective potential is supposed to 
have a Fourier transform v~(k) uniformly well behaved near k0=0 ,  
Ik[ = PF and vanishing there to first order: 

f dz ~'h(k) - ~'h(ko, k) eik(z ZI)W~(Z-- ZI ) dz '=  

%(po, pFr = 0, ~ ~(po, pr ~ O, (5.33) 
P = P F  
PO 0 

At  P =  @o wh(po, po~) = 0 
PF 

P 0 =  0 

Our definition of existence of a normal Fermi surface and of the mass 
of the quasiparticles is based on the above heuristic arguments: 

D o f i n i t i o n  1. We say that there is a normal Fermi surface of 
radius Pv and there are quasiparticles of mass rn if the part of the effective 
potential on scale h and degree 2 in the fields (i.e., the part connected with 
the interaction propagator)  satisfies 

1. vh--,0; ~h, ~ h - - ' ~ .  

2. W'h(Z--Z') is a distribution with Fourier transform uniformly 
regular within a momentum layer of size 0(2  r ~)hpo ), for some 
e > 0, near k = (0, k) with Ikt = Pv, and satisfying (5.33). 
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In fact, we think of property 1 as the weakest definition of a normal Fermi 
surface and quasiparticle mass, and we think of the pair 1, 2 as a stronger 
version: we refer to the two possible meanings by saying, respectively, in 
the sense of  definition (1, 1) or (1, 2). 

Note that it would be perhaps more satisfactory to require property 2 
for a layer around the Fermi surface of width O(po) rather than 
0(2  (~ -~)hp0): however, we are unable to study this stronger property, and 
the reason is quite fundamental (Section 11). The physical meaning is that 
the pair Schwinger function behaves as the free one (with the correspond- 
ing Fermi surface behavior) only if we look at distances which grow very 
large with the infrared cutoff. We must therefore couple the thermodynamic 
limit with the computation of the correlation function: for fixed ~ > 0  
(a priori), the correlation has to be computed at distances between L 1 
and L if the system is confined in a box of size L and if we want to see the 
Fermi surface singularity with no corrections. 

Setting A 2 = k ~ +  ( k 2 - p ~ ) ,  we develop, in Section 12, an expansion 
for the Schwinger functions implying that the corresponding expansion for 
the function w'h(k)/A 1 +~ is bounded uniformly if po2 h <A < po2 h(~-~) for 
e <  1/4. 

We also show that all the effective potentials (connected with the 
many-body Schwinger functions) admit an expansion in powers of a h, fib, 
vh and of a fourth running form factor 2h, which is a function on (SF) 4, Sv 
being the Fermi sphere. The expansion has coefficients bounded, to order 
n, by n!, using the supremum norm to measure the size (see Section 9) 

of 2h. 
Furthermore, the vh= (vh, eh, ~h, )oh) are given by a formal power 

series in vh+ 1, vh+2 .... with coefficients bounded by n!: 

vh l=AVh+B(vh ,  vh+ 1 .... ) (5.34) 

with A a diagonal matrix with diagonal (2, 1, 1, 1) and B, called the beta 
functional, given by a formal power series in its arguments v. 

Hence we have a way to define what we mean by a perturbatively 
well-defined normal Fermi surface and quasiparticles. 

De f in i t i on  2. Consider the relation obtained from (5.34) by trun- 
cating B to a given order p in its expansion in the v's. If the new truncated 
relation generates, for suitably chosen co, Vo and for given ~o = 0 and )~o 
small enough, a sequence vh bounded uniformly and such that vh ~ 0 and 
~ h -  ~h--* 0, then we say that perturbation theory is consistent up to order 
p and that, to this order, the normal Fermi surface exists together with 
quasiparticles of mass m [in the sense of definition (1, 1)]. 

822/59/3 4-3 
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In Sections 6-13 we develop a general perturbation theory aimed at 
studying normal Fermi surfaces. 

But there is also a natural notion of anomalous Fermi surface: we shall 
see in Section 15 that one-dimensional spinless systems show anomalous 
Fermi surfaces and that our formalism can be easily adapted to the theory 
of such anomalous Fermi surfaces. 

Without entering into a heuristic analysis for the purpose of motiva- 
tion, one can say that a system has an anomalous Fermi surface when the 
numbers cch, ~h approach a singular value (i.e., oe) in the limit h--* -o e .  
Setting Zh = 1 + ~h, we say that the anomalous dimension of the Fermi 
surface is t / i f  Zh ~ 2-"h; see Section 15 for a more precise discussion. 

Our analysis does not extend to the theory of anomalous Fermi 
surfaces in d >  1 systems. However, it seems likely that systems with 
short-range repulsive forces show normal Fermi surfaces if d >  1; see 
Section 14. At the same time, when d >  1, new interesting phenomena 
become possible, such as the concentration of the interaction in the Cooper 
pairs of quasiparticles and the relevance of the interaction sign. 

6. RELEVANT VERSUS IRRELEVANT 

The flow of the effective potential will be analyzed by using the 
methods of the renormalization group. (~6-t8) We begin with 

V(~ V(O(<~~176176 (6.1) 

and as a first step, to adhere as much as possible to the formalism of 
refs. 16 and 17, we rewrite (6.1) in terms of Wick ordered expressions in the 
quasi particle fields, and of the covariant derivative operator 9 •  
(O, dx-T- i(o~/2pv)A) = (~,,  ~ ,  " 

2 
V (~ = f dx  dt 1~ d~ (Vo + go) eipV(r r176 + Tx,~,,,2"~ll - " 

i = l  

2 

+ f dx  dy  dt ~[ d ~  gx(X - y) e ipv('lx ~2Y~'dI.T x, + ~,,~ ,-~11 r.-~, ~,2" 
i = l  

2 

+ f dx  dt ~:ofl I1 d~ eiP'(~ ~2)X:Ox+,t,o, ti~ t,~2: 
i = 1  

4 

+ f dx  dy dt [ I  do~ e ipv[(~ to4)x- ( r  r  _ y) 
i = 1  

X ".@xWl, Oll~J;t, ol2@y~t,o),3@2t, o)4: ( 6 . 2 )  
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where we write ~ for N , and g(x, t, 0))= Z ~  g.(x, t, r is defined by 
(4.5); rotational invariance is used, and we set 

~7o = --2,~o(0) f g(0, 0, 0)) do), ;o(k) = f dx 2o(X) e -ik* 

~l(Z) = 2 f g(z, 0, 0)) 2o(Z) e ~pFo,, do) 

(6.3) 

Here, as well as in the following sections, 0)2 will often be regarded as a 
four-vector with vanishing t component. 

The use of Wick ordering could in fact be easily avoided; see 
concluding remarks of Section 10. 

While (6.2) looks quite complicated, it can be split into two parts 
which will be called, respectively, relevant and irrelevant. 

The relevant part of V (~ consists of the localpart V(L ~ of V (~ defined 
by 

2 

V~ ~ = f 1~ d0)i dx dt (v o + Vo) eipF(~ ~ t, to 1 + "r x,t, to 2 " 1 / 1  - " 

i = 1  

2 

+ f 1-[ d0)i dx dy dt gl(x - y) e ipF('~215 o~2y) 
i = 1  

x :~/+,,,~(0~,,,o,2 + (Y - x) ~.,20~,,,,oa): 
2 

+ O~oflf H d0)i dxdt~ipz(~ i "  ~ ,I, �9 r~ .tff x, t,o~l w~.t 2 =~Jtt~2 tF X, t, ~2  . 
i = 1  

4 

- f dx dt [ I  d0)i eipv(~176176 c~ 0)2, 0)3, 0)4) 
i = 1  

�9 + + - -  . 

X .Ox, t, OllOX, t,o,2~]x,t, eo3@x,t, ol4. (6.4) 

where we have set, or we set for later use, ;o(0) - 0)') - ~ 0 ( P F ( 0 )  - -  0 ) ' ) )  and 

t" 
Vo = Vo + Vo + j ~l(z) e iPFOJZ dz 

~o = C~o + ifl 10) f e~pvo, z~l(z)z dz 

& ( c o l ,  c o . ,  co3, COn) = -- �88 [ '~o(0)2 - -  0)3)  - -  "~o(0)1 - -  0)3)  

- -  "~0(11)2 - -  0 ) 4 )  + ~ 0 ( 0 )  1 - -  0 ) 4 ) ~  

(6.5) 
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Hence the relevant part of the interaction can be written as 
2 

V~ ~ = Vo f 1-[ d~ dx dt e ~'~~ '~2)":lpx+~,,Ol~b~,~,,o2: 
i=l 

2 
~ 0 t  I-[ dr d x  A''ipv(~l-~ (;R.., 6~ 

o 

+ 
, /  

t = l  

4 

- f dx dt I-I do)i eeF('~176176 r176 c~ r176 
i : l  

"1'+ 0 + O-  0~,,,,~4: (6.6) X . . r  x ,  t , , .o t x ,  t , r  2 x ,  t , r  3 

So the initial potential V <~ is split as 

V(~ = --LV ~~ + V~ ~ (6.7) 

and the reason why we call the first relevant and the second irrelevant will 
become clear later and is at least twofold: 

1. We shall see that if we set V~ ~ - 0, we find no more and no fewer 
difficulties in developing the theory of the flow of V <n), n = - 1 ,  - 2 , . . .  

2. The V~ ~ will turn out to be composed of three marginal terms 
[the 2 o term, the ~o term, and the (o term, see (4.12), which is initially 
zero] and one relevant term (the Vo term), while the V~ ~ will only contain 
irrelevant terms, the above words being used in the sense of the renor- 
realization group theory. r 18) 

7. LOCALIZATION OPERATORS 

We follow the methods developed in refs. 16-18 to analyze the flow of 
V (h) as h - , - o e .  Therefore we must introduce localization operators 
which, acting on a potential V (h) expressed as a sum of Wick monomials, 
turn it into an expression like (6.6). 

We shall operate on V's which are written as sums of integrals of Wick 
monomials P in the fields, multiplied by regular (i.e., nondistributions) ker- 
nels W generated by well-defined rules (Feynman diagrams). The kernels 
depend on the field labels and the first space-time label x of the first field 
in P will be called the localization point of the monomial P. We adopt 
systematically the convention that x -  (x, t). 

Each of such integrals is an expression Op which will be called an 
operator contributing to V (h). If the Wick monomial depends only on fields 
computed at the same point, then we say that the operator is local. The 
kernel W is called a form factor for Oe. 

The most convenient way to define a localization operator &o h acting 
on such V's is to describe how it acts on the elementary monomials P and 
extend it by linearity. 
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The action of ~h on the operators will be analogous to the operation 
V (~ which is a described in the previous section in going from V (~ to L , 

localization in a strict sense, i.e., it turns some nonlocal operators into local 
operators. 

The Wick monomials that we shall consider will be monomials in the 
local fields ~1, (<~h)+- 

~/~( <.h~ =__. [ a ,, a,, + i(o~/2pF ) A ] llli ~h) ==_ ( ~ , ,  ~,,,) lll( <~h)- 
r x o 3  r x ~ r xo~  

and in the nonlocal  fields: 

D x~, ._(~<h)+ _ (t//( <~m+_ _ ~b( <~h)+_ ) 
- -  \ ~ x ' ~  r x o )  

sl(~<h)x'xo) = (O0c~m h) - -  I]/(~<h)rxco - -  ( x t  - - X )  N J / ( ~ < h ) -  ) r x o  
(7.1) 

- N0  h)- 

$3(~<h) = (X 3 _ x4  ) S 2 
X l X 2 X 3 X 4 ~  x i x 2 o ~  

where we call sites of the nonlocal fields the set of space-time indices 
appearing in them. We can similarly define the nonlocal field components 
D(h)xy,o, sl(y~, etc., using 0 (h), D0 (h) instead of 0 (~h), Nr  (~h). 

The operator N = N -  is the covariant derivative operator introduced 
in the previous section; see (6.2). The fields D, S ~ are thought of as 
emerging from the point appearing as their first space-time label. 

If A (h), B (h) are two of the above fields and d A denotes the vector 
joining the first two sites of A or the tensor formed by the two vectors 
connecting the first site to the second site and the third to the fourth (if 
there is only one site, d A = l ) ,  we see from (4.5) and (7.1) that the free 
Schwinger functions (A (h lB  (h)> have the form 

(A (h )B  (h) > =2(r162 TM (2hd~)eegff s (7.2) 

where za = 0 if A is 0, D, S 1, S 3, r ,  = 1 if A is DO, $2; and YA is the formal 
order of zero of A, i.e., the homogeneity degree of dx (here d~ * is a notation 
for a tensor with 2A indices); gAe is a function (with some small 
dependence on h) of the set of sites of A and B scaled by 2 h. Given any 
Wick monomial P in the above fields A, we define 

z p = Z 7A = {dimensional gain of P}, dp  = ]-[ d~ ~ 
A c P  A ~ P  

rio= - 2 +  ~ ( I + ~ A ) =  {scaling dimension of Oe} (7.3) 
A c P  

6 p = - 2 +  ~ ( �89  
A ~ P  

with dE a tensor with zp indices. 
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The above  d i m e n s i o n - i n d e p e n d e n t  power  count ing arises from the fact 
that  the particle p r o p a g a t o r  singularity is on a surface of codimension 2 
(namely,  the Fermi  surface k0 = 0, [k] = P v ) ,  independent  of d; see also the 
comment s  after (10.9) below�9 

Thus  we see that  the opera tors  in the relevant par t  (6.6) of  the interac- 
t ion give rise to opera tors  O with nonposi t ive  dimension,  while the (non- 
local) terms of the irrelevant par t  of the effective potent ial  are opera tors  
with positive dimension.  

In  fact, we can write the irrelevant par t  [defined as the difference V~ ~ 
between V ~~ in (6.2) and V[ ~ in (6.6)] by compar ing  (6.6) to (6.2), via 
(6.5) and (6.3), and getting 

= f d x d y d t d o ~ d o ~ 2 e ~ p v ( , o ~  ~2)X~l  ( X  - -  'Y J'[]/X~Ol''~"l'+ S lyxm2.. V (R o) 

+ f d x  d y  dt  d o ~  do)  2 do.) 3 do.) 4 e ipF[(~~ -~oa)x + (co2-o~3)y]j,(y _ X) 

x 2 - 1  " + + - - ' 'Jh + ~h + D -  d ~ -  �9 ('~/xttol D ytxto,2 ~lytco3 ~lxtco4 " Jff "rxtcol'rxto,2 ytxtco3"r xtto4" 

"D + + " " + + D �9 -t- . xtyto~l @ ytm2 ~/yto331[Ixtm4. -~- .I/] yto, t l[gytoJ2 ~/yto~3 x ty t to4 ' )  (7.4) 

To  describe the act ion of the opera to r  ~ ,  we consider first the case 
when it operates  on Wick monomia l s  in the fields (7.1) of degree four. 

In this case we define, if Nh ---- 1 -- 5oh: 

~ .  + + -- _ . 
h'~JXlOllOx2to2Ox3ol3Ox4ol4" 

= 2  1 2 " + + "~ xjoll ~ Xjo2 ~ xjo~3 ~ xjo 4" 
j = 1 , 2  

,~ :r xl ~ ~ x:,o2 r ~o,3 ~ ~4,,,,' (7�9 

- -  + O + 
- {:~XlO, x~x~,~o~.o,4 

" + + D " + + - D -  �9 -~-.I//XIOII I~/X1~2 X3XlOJ3l[lxdoJ4:"~-'l~l?Cl~_Ol~lXlltl2l~lXlCXl3 X4Xl 014" } AS 

where AS means  an t i symmetr iza t ion  with respect to (Xl, 0~1)~--, (x2, o~2). 
The  opera to r  5 ~ is extended by linearity to the other  monomia l s  of fourth 
order. It  turns out  that  5O annihilates all the four th-order  monomia l s  with 
more  than  one nonlocal  field or with one nonlocal  field. Otherwise 

~ ' d /  + D + i b  - ~b - �9 "T XICO 1 X 2 X 2 ' C O 2 T X 3 r  " 

= "~h + D + ~b ~b �9 "r  XlO~ 1 x 2 x 2 , o ~ 2 r x 3 o ~ 3 r x 4 t o 4 "  

�9 + + - - " " d / +  D + d/  - -  ( ' D x 2 x z o ,  l ~ P x 2 o , 2 ~ ' x 2 , o 3 ~ ' x 2 , o 4  ' + ' * x 2 ' o *  x 2 x z o 2 * x 2 , o 3 ~ k L ' o . :  

+ ' * b  + *h + D -  I p x 2 , 0 4 : + "  + + - D " " r  x2'tOl r X 2 ' ~ 2  X2X2'O3 

(7.6) 
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S'~h + D + ~//- d/-  �9 ' T X I O )  1 X2X2'012rX30)3rX40)4" 

- ~ / / §  I / / +  O -  ~ b -  ' �9 + + - = " r  X 2 0)1 r X2012 X20)3 - -  X2014" - -  "~/52 '  0)1 ~[ X2' 012 @ X2' 0)3 ~l X2" 014: 

The action of ~h on the monomials  of degree two is generated by 
~ ,  + -- . . + 

h.0x10)~ 0x20)2. = .0x~0)l(0x~0)2 + (x2 - Xl) ~0xl0)2): (7.7) 

We now consider the second-degree monomials  generated by multiplying 
+ D + by a local field ~h~3012 or ~0x-30)2 or by any of the nonlocal I/] Xl 0) o r  Xl x20) 2 

fields of minus type in (7.1). The operator  ~ transforms each of the above 
(12) monomials  into a combination of the others. We write 1 for Xl, 2 for 
x2, etc., and we shall not write explicitly the quasimomenta o)1 of the 
plus-type fields and 0) 2 of the minus-type fields. Then one easily finds that 
the action of ~ on the monomials  on which it is not the identity and of 
on the same monomials  is 

2':~h ? Dy3: = (x2 - x3):0 ? ~ t ) l -  : 

s  = :g'?~h ; : - : 0 ~ - 0 ; :  + ( x 3 -  Xa):0~-~01 : -  ( X a - - X 2 ) : 0 2 ~ 0 ; "  

~:D?:~03"= :0 ? ~ ' ; - : -  : 0 2 ~ 0 ; :  

~ : D ~ D 3 4 :  = ( x 3 -  x 4 ) ( : ( / / ~ O l  1 - - 1 1 / / ~ / / 2  1) 

~ : 0 7 ~ , ;  = :0(5~:  (7.8) 

�9 =-g'1 521. 

. ~ : 0 + D ~ 3 : = . 0 + 5 1 .  . + 3 . �9 1 23 '  -1- "@ 1 5 3 1 2 3 "  

~ : D ~ h ) -  :D~5311:+. + 1. . + 3 . ' :  "1//2 $ 2 1 "  2 1 - - @ 2  $ 2 1 3 2 -  

~ : D ; ~ O ; "  = : D ~ S ~ : -  :~ ~ + 5~2.2 

~ : D ~ D ~ 4 :  :D~2 1 .  . + 3 . . - 3 . = S 3 a . - - ~  . O 1 2 S 4 1 3 4 . - J r -  .@2 $2134 .  

The above definition of the action of ~ on any V which is a sum of 
integrals of Wick monomials  in the fields (7.1) produces term by term a 
result of the form 

f d x  e ipv(011-0)2)x[-v(0)l, " + - " do) 1 do~2 0) ~).~ ~0)~ ~,~0)~ 

+ c~(0)1, m " + 

4 

f . + + -- . 
+ eiPV(0)t+t~ 0)4)x d x  I - [  d 0 ) i ' ~ ( 0 ) i ,  0 ) 2 ,  0 )3 ,  0)4)'~/]~.0)ll//x0)21//~cco31/lx014- 

i = 1  
(7.9) 

where, of course, each term produces only one of the above addends. 



578 Benfatto and Gallavotti 

The collection of all the contributions of the form (7.9) obtained by 
acting with 5 ~ on V (h) will be written 

f e ipF(o l  o,2)x dx do~ do,)  2 ~2 h'' " l ' (<~h)+ ' l ' (<~h) - "  V (L h) V h'tP' x6o I tp' XOJ2 . 

a, . ,I,(<~h)+ ^ ~ . t . ( ~ h ) - - . d _ ? "  . d , ( < ~ h ) + ~ , l , ( < ~ h )  .~ 
+ ~ h ' q ' x o l  i]Jo)2~o~2~px'~}  2 �9 m Sh.W xto 1 tWxea2 .1 

2 
- -  f eiPv(t~ + ~  t~ o~)x  dx ]-I dt~ do~; 

i = 1  

' o '  ~"l"(<~h)+'l"(<~h)+'l"(<~h)--'l'(<~h)--" (7.10) 
X 2 h ( ( D 1 ,  ( 0 2 ,  O 1 ,  21.5~,XOl V x m 2  '~'xto" t e x o ~ '  2 " 

It is important to notice that in (7.10) Vh, ~h, and ~h are independent 
of o 1, o2. This follows by observing that the effective potential could be 
calculated by doing the integration over the fields ~(~), n > h, in a single 
step [-see (4.12)], without introducing the fields 4 -+ Of course also the X O ) '  

dependence of 2 h on the o 's  has to be somewhat special to reflect this 
gauge &variance property; see also Section 14. 

Then the part of V (h) of degree two in the fields must have the form 

f dx dy w~(x-y):~+x~7" 

= J dx dy d o  1 do2  cipV(o~l x O,)2 y ) 

• Wh(X _v~.~ll(~h)+ [dj(~<h) (~h) S ~ . ~,'~x~,l . . . .  2 + ( Y - - X ) ~ x ~ 2  + yxo,2]" (7.11) 

with Wh being a suitable rotation-invariant distribution. 
Acting with 50h on (7.11), one immediately finds the validity of the 

claim about ~h, vh, G. 
The constants Vh, ~h, (h together with the function 2h will be called 

running form factors on scale h. The vh will be said to have scaling dimen- 
sion 1: and to remind us of this attribute, its definition contains the 
factor 2 h. The others will be said to have scaling dimension 0. 

The result of the application of ~h on V (h) gives rise to an irrelevant 
part of V (h) defined by V~ h ) -  V (h ) -  V(L h). 

We shall denote for each h ~< 0 the running form factors as 

Vh = (Vh, ~h, ~h, 2h) (7.12) 

and we do not call them running couplings, except if d =  1, because 2h is 
a function; hence they correspond to infinitely many parameters per scale: 
the name running coupling usually denotes finitely many constants per 
scale. 
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To understand the meaning of the operations ~ and ~ and their rela- 
tion with the heuristic considerations of Section 3, 5, we write the result of 
the action of L~h on the lhs of (7.11) as 

f (<~h)+ r,, ,I,(<~h)+,l,(~h~- +bhO x (_A_p2v) dl(<~h~-]dx (7.13) L ~ h ~ ' x  W x  r x  

while the 1 -  ~h operation yields, for a suitable choice of the distribution 
w;(x - y ) ,  

f w'h(x-y) ~/J(<'h~+~l~(<'h~- dx @ T X  r y  (7.14) 

The distribution w~, can be easily computed from (5.2), (7.5)-(7.8), and 
(7.11) and is trivially related to wh; see (7.16) below. 

Hence we see that the second-degree part of the effective potential on 
scale h can be written as 

f r .  ,~,(<.~+,~,(<.h~ + b~<_h~+(_j  + p~)O(<.h~-] dx k~hT~ x ~ x  x 

+ f w'h(x--y) ~/J (~h)+ tb(~h~-~y dx dy (7.15) 

The distribution w'h(x-y) has a Fourier transform at momentum 
(ko, k), which we write ~ ( k o ,  p2), with p2= k 2, to take into account the 
rotational symmetry. It can be easily verified that 

~ ( k o ,  k 2) = ~h(ko, k 2) - ~h(O, p2) 

~ (0, p~)-ko ~% _ (k 2 _ p2) @--7 ~ o  (0, p~) (7.16) 

We see, recalling (3.11) and (5.27), that, in order to check the 
existence of the Fermi surface, we have to verify the existence of wh(x-y)  
and a fast enough decay at o9: what is needed is that ~h(ko, k 2) is so 
smooth that, near the Fermi surface ko = 0, Ik] = PF, the rhs of (7.16) goes 
to zero faster than rko[ + lk 2 -  p2vl. See Section 11 for a further discussion 
of this point. 

It will be clear that (7.5)-(7.8) are overdoing some subtractions. In 
fact, the basic bounds of Section 10 would work if instead of insisting that 
LP and ~ be linear operators, we just defined them as operations whose 
action on a linear combination of Wick monomials is defined by acting in 
a prescribed way on each of the monomials and taking then the same linear 
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combination. The latter procedure would be possible provided the effective 
potential expression in terms of Wick monomials is produced according to 
well-defined rules (as will be our case). The results would, of course, 
depend on the particular path followed in the construction in case the 
latter contains arbitrary choices. The price we would pay would be that we 
could no longer be a priori sure that the gauge invariance property intro- 
duced after (7.10) holds. 

The advantage would be a simplification in the structure of 2 '  and N: 
for instance, we could simply define 5g be (7.5) on a product of four fields 
0-+ and set the 5g in (7.6) simply equal to 0, i.e., set 2 '  to zero when acting 
on fourth-degree monomials with dimension 6p ~> 1; similarly, we could set 
2,e equal to zero on the terms of (7.8) with dimension 61, ~> 1 and we could 
set ~ ( : D ~ z O 3 : ) = ( x 1 - x 2 ) : ~ O [ O 3 "  rather than using the more com- 
plicated expression in (7.8). The bounds in Section 10 would work without 
change. 

In Section 11 we adopt partially this viewpoint, i.e., we modify the 
definition of ~ ,  giving up the linearity by setting it equal to zero in the 
cases (7.6); but we shall stick to the basic definition (7.7) because giving up 
the gauge invariance in the terms of second degree would, in the long run, 
produce disadvantages which would become overwhelming. It might be 
interesting to know whether the ideas of ref. 34 could be useful in this 
context. 

8. G R A P H I C A L  I N T E R P R E T A T I O N  

We start by representing graphically the various terms of the relevant 
interaction Vc ~ in (6.6): 

s s e l  ~ s s 

x 

s 

s 

, "~ ( 8 . 1 )  

representing, respectively, also the three integrands in the rhs of (7.10) (we 
say that they are three and not four, because ~o=0). The superscripts 
remind us of the meaning of the lines as fields. We call the three graph 
elements in (8.1) the local graph elements. 
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The irrelevant part of the interaction V ~ [-see (7.4)] will be repre- 
sented similarly: 

604 

I t02 

D ~ 3 _ _ (  OJ3 ..j_ . , .  

(8 .2)  

with a self-explanatory notation, allowing us to identify unambiguously 
each term in (7.4); the dots refer to the graphs representing the last two 
terms in (7.4). The circle denotes the fact that the nonlocal field D or S 1 
has as indices the two points which it joins in the graph. The nonlocal 
fields D and S 1 are regarded as emerging from the point corresponding to 
their first label, i.e., the point in the picture from which the line labeled D 
or S ~ emerges. 

We can find also a natural representation for the action of the (1 -5~h) 
operators; in fact (7.5) yields the following picture: 

* D 
~ h  ~'Ol ~ ~ 0)3 (~ ~~ 

~ 2  

+ ,o~ I o,~ .- .- + . . . ( A S )  

4 

(8 .3)  

where the dots refer to the three similar graphs representing the other 



582 Benfatto and Gal lavot t i  

terms in (7.5), due to the AS operation. Moreover, the relations (7.8) can 
be represented as 

tO I 11)2 O~ l ~ S I 0) 2 

c.~ tO2 to I ~ S 2 m 2  

r I D to 2 ca) 1 S I t ~  o, I1 

~ h  ( " ~ ( = ( ' ~  " ' + 

S 3 o)2 

(8.4) 

In similar way we can represent the action of Nh on the more com- 
plicate second-degree monomials involving D + in (7.8) or the action of Nh 
on the fourth-degree monomials (7.6). We do not report the corresponding 
diagrams, which the reader can easily imagine. 

Finally, we can represent the relevant part of V (h) given in (7.10) by 
(8.1) if ~ over a line means either ~ or i r  This unification in the 
notation is very useful, as it simplifies considerably the graphical represen- 
tations. 

9. THE BETA F U N C T I O N A L  

The beta functional is defined to be a function B h such that 

vh_ l = Avh + Bh(Vh, Vh+ 1,'", V0) (9.1) 

where A is a suitable linear transformation trivially operating as a multi- 
plication by a suitable constant (1 or 2) on the four running form factors 
of the relevant part of V (h) [see (7.9)]: Vh = (Vh, eh, (h, ;th). 

We apply the methods developed in refs. 16-18 to study the functional 
B. We assume that the reader is familiar with the structure of the tree 
expansion. (17) We refer to the literature for the motivation behind the 
definitions below. (a8'16) 

The tree expansion provides the recursive expression (9.1), i.e., essen- 
tially an expansion for the relevant part ~h V(h) of the effective potential on 
scale h together with an expansion of the remaining irrelevant part Nk V (h) 
in terms of the form factors vh+ 1,..., Vo. 

It is obvious from the definitions of Y,  N of. Section 7 that this is 
possible: in fact, this is a purely formal statement and it holds whether we 
consider the definition (7.6)-(7.8) of ~ or the modification suggested at the 
end of Section 7 or the other modification introduced later in Section 11; 
see (11.7). Below we only describe the result for the first definition of ~ in 
Section 7: its proof is inductive. We skip all motivation steps, as the for- 
malism is identical to the one introduced in refs. 16 and 17 and in ref. 18 
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in the case of the bosons, and we wish to avoid a very long repetition. 
Nevertheless, we stress that in principle what is described here is 
self-contained. If one has enough faith to read the definition of the rhs of 
(9.1) (to which this section is completely devoted), then it is very easy to 
check by induction that (9.1) is in fact correct with our expression for the 
rhs. The adaptation of what follows to other definitions of ~ is immediate. 

Let 0 be a tree with m endlines, and let v be a vertex of O bearing a 
frequency or scale label h~. 

The beta function is associated with trees like 

h - 1 .  

R R 

(9.2) 

in which the first nontrivial vertex has frequency index h and bears an 
L-label (meaning that the operation 5~ 1 has been applied to the function 
of O(h-l~ symbolized by the tree without the label L). All the other tree 
vertices v carry a label R, meaning that the operations ~h~ ~= 1 -5~h~_ 1 
have been applied (see below). 

The trees form a partially ordered set of vertices where the root is the 
vertex to which the index h - 1  is attached: the frequency indices strictly 
increase as one moves monotonically from the root toward the endlines. In 
practice we write trees as in (9.2) and orient them from left to right. 

If 3 has m endlines, we label then 1, 2,..., m from top to bottom: we 
identify trees which, before the labeling, are topologically identical and we 
imagine selecting with some rule one representative tree per equivalence 
class, never drawing the others. The labeling is also not arbitrarily set 
down, but we label the points from top to bot tom (say): hence one can 
estimate th'~t there are only < 2  4m trees, in the above sense, with m 
endlines. 

Each vertex v E ~9 can be thought of as the first nontrivial vertex of the 
subtree 0~ ~ ~9 with root at the vertex v' preceding v in the ordering of 0. 
The m v endlines of the tree 0 define a subset of the set of endline indices 
which we call the cluster associated with v, or the cluster v. So the clusters 
with higher frequency have smaller size, and if v' precedes v in the tree par- 
tial ordering, then v' is actually larger in size; i.e., the tree ordering is, in 
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terms of clusters, according to decreasing size or scale and to increasing 
frequency. 

Our purpose is to introduce the notion of scaling decomposition of a 
Feynman graph: it will be described in terms of ordinary Feynman graphs 
carrying a rather large number  of extra labels which are meant as 
reminders that the calculations of their values are suitably modified with 
respect to the usual way of computing undecomposed graphs. We shall call 
the new objects simply Feynman graphs to avoid a proliferation of names. 

To each tree 0 one can associate a set of 0-compatible graphs. This is 
done, as already suggested by the graphical representations of Section 8, as 
follows. 

1. Associate with each endline 1, 2,...,m of 0 one of the graph 
elements introduced in (8.1) and (8.2), appending an extra label 1, 2,..., m 
to all the space-time labels already appearing in them: this is done in order 
to identify to which of the m endlines they have actually been associated. 
We call the vertices in (8.1) relevant vertices, because they correspond to 
relevant operators in the sense of Section 7. A cluster of endlines is thus 
also a cluster of vertices and hence of space-time points. In this way we can 
think of the clusters associated with the tree vertices also as clusters of 
space-time points ordered hierarchically by inclusion. 

2. Connect some (up to all but two) of the lines in pairs, allowing a 
pair of lines to form a single line only if the directions of their arrows do 
not come into conflict. We thus form a graph G. 

3. For  each vertex v e 0 we can consider, as mentioned in step 1, the 
set of space-time indices of the points in the graph elements associated with 
the m~ endlines of the cluster v: thus we can think of the cluster of points 
in v as a cluster of space-time points which we call the v-cluster. 

We enclose into an ideal box the v-cluster together with all the lines 
of the graph G which join pairs of points in v: in this way we isolate 
naturally a subgraph G~ of G whose internal lines are all inside the box of 
the v cluster. It is the graph obtained from G by cutting in half every line 
in G which joins a point of the v-cluster to points outside the v-cluster and 
then deleting the part  of G disconnected from the points lying inside the 
cluster v; i.e., we delete all the graph elements not belonging to the cluster v. 

4. We append to each inner line an index s or h classing it as a soft 
or a hard line. If a line 2 is inner to a cluster v but not to any smaller one, 
then we say that h~ is the scale or frequency index of 2. If the line 2 has one 
endpoint inside a cluster v I and the other in v2 but not in vl, with v 2 larger 
than Vl, then we say that 2 crosses Vl: hence a line crosses all clusters which 
contain one endpoint a n d  not the other. 
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5. We discard G unless for all vertices r e 0  the subgraph Gv is 
connected and the connection can be realized by considering only the hard 
lines inner to G~. 

We say that G is compatible with 0 if it survives step 5: note that the 
entire graphical discussion just presented translates some rather simple and 
natural geometrical observations and conditions. (16 ~8) 

In words, a graph G is compatible with 0 if it is the union of a collec- 
tion of connected subgraphs, hierarchically ordered by inclusion, so that 
the inclusion relation provides a realization of the partial order structure of 
the tree 0, and furthermore the connection properties of G do not change 
if only the hard lines are taken into account. The reader should try to make 
a few drawings and examples for a better understanding of the above 
notions. 

The above definitions introduce graphs G with internal and external 
lines. Each internal line arises by joining together two lines of the basic 
graph elements. 

Hence we shall think of the external lines as half lines and of the 
internal lines as full lines composed of two half lines uniquely identified by 
the graph elements from which they come. 

Then we look at all subgraphs Gv of G, supposed 0-compatible, which 
have two or four external lines. If v is a tree vertex carrying an R super- 
script, we shall add, according to a rule that we are about to describe, 
superscripts D or S to some of the half lines emerging from G~. 

This is supposed to reflect the application of the operator ~ho ~ to the 
function of 0(~h~ 1) arising from computation of the truncated expectation 
symbolized by the tree vertex v. 

This is done as follows, and is based on the graphical representation 
of the operation ~h~: described in Section 8. 

(a) When G~ has four external lines of 0-+ type, the Nh,, operation 
can be simply thought of as replacing G~ with a new graph [chosen out of 
up to six as shown in (8.3)] identical to Gv except for one of the external 
half lines, which is replaced by a D line, and some other external half lines 
are thought of as emerging from different space-time points of the same 
cluster v. The actual number of choices of modified graphs could be smaller 
than 6 when some of the space-time points coincide (in which case some 
D field may vanish). We distinguish the choices of the various graphs by 
adding a label to the cluster v (say, a number from 1 to 6). 

(b) When G~ has two external lines, the action of Nh also simply 
amounts to replacing G~ by a new graph (chosen out of up to three 
possibilities), as (8.4) shows. We distinguish the various graphs by adding 
a label to the cluster v (say, a number from I to 3). 



586 Benfatto and Gallavotti 

This completes the description of the meaning of the R labels on the 
tree vertices. It remains to explain the L label on the first nontrivial vertex. 

The presence of such a label simply means that we discard all graphs 
G with more than four external lines. For  the others we replace Gv0 by a 
few new graphs obtained from Gv0 by changing the meaning of the external 
lines according to a prescription similar to the one used for N, but using, 
if one wants a graphical representation, an appropriate graphical represen- 
tation of the ~ operator similar to the ones of Section 8. Each G~0 is thus 
replaced by up to four terms; all of them are local, i.e., they represent 
monomials P of the form �9 + + - �9 " + �9 �9 Ox,~10x,,:0xo,30x,~4., .qJx,~l~0x~: . , '  + - �9 or .Oxo, l~0x,~:.. 

The collection of the tree 0, the graph G, and of all the labels added 
to it in the above construction will be called a relevant Feynrnan graph. 

A similar construction can be performed also for trees like the one in 
(9.2), which however, carry an R label on the first nontrivial vertex and a 
scale index h~0 not necessarily equal to h (but >~h). One just treats the 
cluster Vo as already done for the inner ones. The collection of the tree ~9, 
the graph G, and of all the labels added to it in the above construction will 
be called in this case an irrelevant Feynman graph. 

Each of the above graphs [there are O((2m)!) of them associated with 
each of the trees with m endlines] will be given a value which is a number 
depending on all the indices appended to the graph. 

Postponing the description of the rules to construct the value wh,~, we 
associate with each graph: 

I. An operator Oe, which is a contribution to the effective potential 
on scale h -  1, and 

II. A size, which is a positive number. 

The operator O e is simply obtained by multiplying the graph value 
with the Wick monomial P formed by the product (in a suitable order) of 
the fields symbolized by the external lines of the graph and subsequently 
integrating the resulting expression over the space-time points and over the 
quasiparticle momenta associated with the fields forming P, and summing 
over the frequency indices. In other words, Oo is the operator with form 
factor equal to the graph value, and it is an element of the Grassmanian 
algebra generated by the quasiparticle fields (hence it is somewhat 
improper to call it an operator: we follow here the traditional terminology). 

The size is obtained by considering the graph value Wh, a and the 
integrals 

C N =  sup f 2 2 h ( x i - - X j )  2 Wh,  G ( X  1 . . . . .  X 2 n  , (.0 1 . . . . .  f312n ) 
k2,..., k2n 
(t)1 ,.-., ~2n 
il ,-.., izp 
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, /= 1 

2,, 

j = 2  

(9.3) 

where xl is the localization point, xl ..... x ,  are the points out of which 
emerge the external lines of plus type, and xn + ~,..., x2n are the points from 
which emerge the minus-type lines; if some of the external lines are non- 
local fields, one has to integrate also over their space-time labels, which, 
however, have not been explicitly introduced in (9.3), for simplicity. The 
quantity 6p is the dimension of the operator associated with the graph, and 
dp is the tensor describing the order of zero of the nonlocal fields; see (7.3). 
Here N is a pre-fixed parameter: when we discuss the N dependence we 
shall refer to (9.3) as defining the CN-size of the graph. In most cases we 
need only N = 0. 

If the graph represents a local operator (i.e., an operator with only one 
vertex attached to external lines), the above size involves no integral: this 
is the case for the graphs contributing to the beta functional (see below) 
and motivates the introduction of the concept. 

The value of each of the above graphs is defined as the integral of a 
product of various factors over the internal line quasimomenta and the 
inner space-time points (i.e., the points not appearing in the external 
fields): each pair of half lines forming a full line will contribute to the result 
a factor equal to the covariance of the two fields symbolized by the two 
lines. The covariance will be soft or hard, depending on the label on the 
line. If h is the frequency index of the line, we use g~<h) for soft lines and 
g~h) for hard lines. 

One attributes a phase factor to the above expression: one counts the 
parity of a permutation that it is necessary to perform on a set of anticom- 
muting Grassmanian fields each of which symbolizes a half line of the 
graph elements of Section 8 corresponding to the endpoints of the tree. We 
imagine them written next to each other on a row according to the order- 
ing inherited from the labels 1, 2,..., m. The Grassmanian fields representing 
lines corresponding to the same graph element will be written down in the 
same order in which they appear in (6.6) and (7.4), i.e., looking at (8.1) and 
(8.2), counterclockwise (say) starting from the left. Then we permute the 
Grassmanian fields by carrying next to each other every pair of 
Grassmanian fields symbolizing two half lines forming a full line in the 
graph, with the object corresponding to the field with index minus to the 
left. The noncontracted or external lines correspond to Grassmanian fields 
which are not paired in the given graph: we nevertheless bring them, too, 

822/59/3-4-4 
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next to each other with the plus fields to the left of the minus fields and the 
sign in question will be _+ 1, depending on the evenness or oddness of the 
total permutation just described. The Wick product of the fields associated 
with the external lines, taken in the order reached after the above permuta- 
tions, defines the Wick monomial P of the graph. It is the Grassmanian 
variable to be used to construct the operator associated with the graph. 

A combinatorial factor 1/sv! is associated with every vertex v if sv is 
the number of tree branches following v. 

The construction of the value continues by looking at the r indices of 
the graphs lines and adding to the list of the factors so far associated with 
the graph a factor exp i(Z +pv~ojxj) if xj is the space-time point from 
which field lines (up to four) with quasimomenta ~% emerge. The sign 
choice is plus for the lines oriented out of xj and minus for the ones 
oriented toward xj. 

We also multiply by a factor equal to the product of the form factors 
Vhj corresponding to the graph elements described by the tree endpoints: 
each form factor is computed at the frequency hj to which the endpoint is 
linked to the tree O by the respective endlines of ~9. A factor 2 hj is put in 
front of every vhj. 

Once all the above operations have been performed, we have to dis- 
tinguish if we are computing the value of a relevant graph or that of an 
irrelevant graph. In the latter case we just multiply all the factors and we 
obtain in this way a function of the graph labels, which we call the value 
of the graph, after integration over the inner points and the inner quasi- 
particle momenta. 

If the first vertex bears an L label as in (9.1), which is the case if one 
wants to study the beta function, then we integrate over all the space-time 
coordinates of the graph vertices other than the localization point of the 
graph and over the quasimomenta of the inner lines. We are left, in this 
case, with an expression which, once multiplied by the fields representing 
the external lines (in the order found when computing the overall sign) and 
integrated over the localization point and over the quasimomenta of the 
external lines, looks like one of the terms in (7.9) which is the contribution 
to the V~ h) of the given tree and graph. 

Therefore the tree in (9.1) defines a set of contributions to V (h-l) 
which add up to an expression like (7.10) with h - 1  replacing h and 
defining what will be called V~ h-~) and the corresponding form factors 
Vh ~ expressed in this way (by construction) as functions of Vh, Vh 1 ..... V0. 
This also completes the description of the beta functional A +Bh in (9.1); 
and in fact the linear part A is simply 

Avh=A(Vh, ~h, ~h, 2h)= (2Vh, ~h, ~h, 2h) (9.4) 
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Following the standard terminology, we say that the coupling Vh is 
relevant, while the others are marginal; also we say that Vh has dimension 1 
and eh, (h, 2h have dimension 0. 

It is the main result of the formalism introduced in refs. 16-18 that the 
effective potential on scale h -  1 is simply 

V(h 1)= V~Lh 1)+ V~,-1) (9.5) 

where VtL h- l )  is the sum of the operators associated with the relevant 
graphs and V~R h-l)  is the sum of the operators associated with the irrele- 
vant ones. The identity (9.5) is not deep, and it is easily proved by induc- 
tion: of course, it is hard to work out the description of the result given 
above if one has no familiarity with the tree expansion: however, to present 
here the above material in a deductive style would be a word by word 
repetition of the work in refs. 16-18 and the reader is referred there (e.g., 
ref. 17, Sections 16-20). 

To shorten the notation, we introduce a special symbol E o to denote 
the combinatorial factor always present in the graph value: 

1 
= - -  (9.6) E~ ~ S~! 

The reader may think that the above decomposition of V (h-l~ into 
relevant and irrelevant parts is arbitrary. The nontriviality of the above for- 
mulation is that if one supposes IVhl ~< e for all h [see (7.12)] and looks at 
the m th-order terms in the variables Vh +1 ..... V0, then one finds, for suitably 
chosen D, C, that their sum can be bounded by the h-independent quantity 
m! C m 1Dem. And if the size of the operators contributing to the effective 
potentials is defined as above, also the sum of the sizes of the mth-order 
contributions from the various diagrams is bounded by the same quantity 
(independent of h). 

By the definition (9.3), the size Co of the relevant contributions to the 
effective potential, i.e., the contributions to the beta functional, from graphs 
of given order m evaluated on a given tree 3 is a bound on the absolute 
value of the corresponding contribution to the ruth-order coefficients of the 
formal power series defining the beta functional (9.1): hence a perturbation 
theory of the beta functional will be a statement about a bound like 
D C  m -  1 from such coefficients. 

The latter statement is interesting because it shows that we have not 
really overdecomposed a big number as sum of many small ones: essen- 
tially it shows that for the purpose of the bounds on the beta function and 
the form factors we have bounded each graph of order m by C m with C 
graph independent: this is the best one can hope. It is also the main result 
which is proved in Section 10. 
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If one modifies the 5 ~ ~ operations in a way which still can be 
algebraically represented by formulas like (7.5)-(7.8) (e.g., in one of the 
ways discussed in the last remark of Section 7), it is clear that the above 
description would be modified only in the labeling procedure. We shall 
make use of this remark in Section 11 and again in Section 14. 

10. ESTIMATES FOR THE BETA FUNCTIONAL 

We consider a general graph G compatible with a given tree O, with 
root frequency h -  1. 

Let mx, m2, m3 be the numbers of graph elements of the three types 
in (8.1). We consider first the case in which there are, in G, only relevant 
vertices, i.e., none of the types in (8.2): the latter will not be considered 
explicitly and will never pose extra problems. In fact, the renormalization 
transformation produces them anyway already in V (-~), together with 
many other irrelevant terms. Hence it is not really restrictive to assume 
that they are initially absent, but it simplifies a little the formal aspects of 
the analysis. Thus the graph G will contain m = m I + m 2 + m 3 vertices and 

2ml + m2 + 4m 3 

m2 

half lines of type 0 -+ 

half lines of type ~3~ -+ 
10.1) 

where the type of a half line considered here is its type in the original 
elements of the graph; recall that after all the labels have been appended 
to the graph some of the lines may change type [see Section 9, comments 
(a), (b)]. 

If G has 2n external lines of frequency h and of type 0, its contribution 
on the tree 3 to the effective potential V (h) has, before the action of the 
localization operators s and ~ ,  the form 

f {exp[ipvQ~=l(C~ } 
• W h ( x l  ..... x , + ,  ..... x2 , ,  o~1,..., ~ 2 , )  

2n 

• :~'x+,~,, ' "  ~'L.~o: 1-I dx j  d,,,j 
j = i  

(10.2) 

and Wh may contain some 6-functions: we allow this singularity to com- 
pactify the notation. 



Perturbation Theory of Fermi Surface 591 

Hence, for 2n = 4, for instance, the contribution of this graph to the 
beta functional will be [see the first of (7.5) and (7.9)] 

t" 
j exp { ipv [-02(x2 - x l) - to3(x3 _ x l) - ~4~x4 - X l ) ] } 

4 
X Wh(Xl, X2, X3, X4, C01, [..02, (.03, (04) U dxj (10.3) 

j=2  

Similar expressions with fewer variables and integrals arise when consider- 
ing the other graphs, relevant for the beta function, with two external lines 
like (10.2) of the types ip+~ - or ~ + ~ - .  

It is useful to remark here, to avoid repetitions, that even the other 
(irrelevant) graphs lead to contributions like (10.2) to the effective poten- 
tial: one just has to consider that some of the fields ~ are replaced by the 
nonlocal fields S ~, S 2, S 3, D-+; in the latter cases the corresponding 
space-time indices have to be thought of as pairs or triples of space-time 
indices. 

In this section we shall often use the locution integrating over some of 
the graph labels: by this we mean integrating with respect to the space-time 
labels x = (x, t) and to the quasimomentum labels r and summing over the 
discrete indices such as the frequency indices or the other indices appended 
to the graphs in the construction of Section 9. 

We want to bound the size of a graph G, (see Section 9, item II); for 
simplicity, we shall consider first the case of a graph relevant for the beta 
function for the running form factor 2h. We have to estimate an expression 
like (10.3), which we write more explicitly as 

Eo f exp{ipv[O~2(x2 - xl) - r - xl) - (d)4(x4 - -  ] K 1 ) ]  } 

x ]-I [2h,(~)  2 ~'h'] dx2.., dxm 
i 

x {  ]n~nel" r do~l[exp(ipFo~l'~l)]2"'hl 
line 

x gl(2h'~ 1~, ml,z;...; 2h1~ j~, ~3,,~)} (10.4) 

where E o is the combinatorial factor (9.6), the f~i are the o's involved in 
the ith endline graph element, and ei= O, 1, depending on the dimension 
(see Section 9) of the coupling constant of the ith graph element [ei= 1 
only for the ml graph elements of the first two of the types in (8.1)]; the 
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hi is the frequency index of the vertex to which the ith endline is attached. 
Moreover, 2qmg t is the propagator of the two fields represented by the two 
half lines forming the line l and ~l = x  j - x i  if l is an oriented line joining 
xi to xs; gz depends on jt~< 4 differences of vertex coordinates ~1),..., ~j~), 
which are determined from the types of the two fields and from the choice 
of the localization monomials in the rhs of the appropriate relation in 
(7.5)-(7.8): note, however, that the ~i) are always differences between 
space-time coordinates of points in the same cluster associated with the 
operation that last changed the meaning of I before its contraction. Finally, 
r/t is the sum of two contributions each coming from one of the two half 
lines forming l: a half line of type 0 (i.e., line ~, D, S 1) contributes 1/2, 
while a half line of type 1 (i.e., a line D 0, S 2, S 3) contributes 3/2. In this 
way the gt functions are O(1) as h --* - ~  [see (4.3), (4.5)]. 

Let, in general, 

i (number of half lines of type 0 • D, S 1 inner to the cluster v, nO v 

but not to smaller clusters) 

n~=i  (number of half lines of type 9 ,  S 2, S 3 inner to the cluster v, 
but not to smaller clusters) 

n~  = (number of half lines of type 0-+, D, S ~ going out of the cluster v) 

n~ = (number of half lines of type N 0 +, S 2, S 3 going out of the 
cluster v) 

s~ = (number of tree branches emerging from the vertex v) (10.5) 

Vl ..... v~0 = (tree vertices immediately following v) 

h i = (frequency index of the vertex to which the ith endline is attached) 

f ~  = (set of the quasiparticle momenta corresponding to the lines 
emerging from the cluster v) 

where the label v sometimes will be omitted when v = v 0` 
We remark that the integration over the o~'s corresponding to the 

internal lines could be explicitly performed [using (4.8)]. However, it is 
convenient to perform first the integration over the x variables and 
estimate the result before performing the co integrations. 

We split the following discussion into two parts. We first suppose that 
the ~ operation has no effect on the lines of G: in this case only half lines 
of type ~, ~ are present [recall that we are assuming that the graph G 
is built only of the relevant graph elements (8.1)]. 

The second case will be when we consider graphs in which the 
operation has produced nontrivial effects, so that the graph may also con- 
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tain some lines of the types D, S i, i.e., lines reflecting a space-time localiza- 
tion. 

In the first of the above cases, given 0, G, let us draw a spanning tree 
# inside G consisting of internal hard lines and such that its part inside the 
clusters Gv of G, associated with the vertices of 0, is also a tree ~t~ of hard 
lines; we take # to be spanning, i.e., we suppose that # connects all vertices. 
We define the root of # to be the localization point of the graph G. Then, 
for every v, the subtree #~ will also be a subgraph of G~. 

We compute the integrals of expressions like the one in (10.4) via a 
Fourier transform in which we express every propagator by means of its 
Fourier integral. If we consider, for the purpose of unifying the notations, 
that cot defines a (d+  1)-vector cot= (0, ~ot) with a vanishing time compo- 
nent, then we see that every inner line 2 will carry a momentum 
pvcol+2htkt and a propagator 2"lht'2t(kl, cot), and the x integrations are 
replaced by kl integrations. To shorten the notations, we write ~z(k), gt(x) 
instead of ~,i(k, co), gz(x, co), unless the more precise notation is required. 

Then the x integrations are replaced by kt integrations and each vertex 
of the graph will provide a (d+ 1)-dimensional momentum conservation 5 
function [which are ordinary (d + 1 )-dimensional Dirac distributions] with 
the exception of the localization vertex with label x~: 

IF][ 6 (  ~ +(2h'k~+co,)) l-I 2~'h'gh(k,) 
all  ver t ices  x lines l l e h a r d  

b u t  x t  c o n v e r g i n g  in x 

x ~ 2'mg,(k,) I~ 2h,(n~) U'h' (10.6) 
l r soft endl ines  

where kt = 0 if l is an external line and the _+ sign depends on whether the 
line l is incoming or outcoming and ~h(k) essentially decays at oo as e -  ~ Ikl, 
and is bounded everywhere, while ~s(k) is bounded by 

I ~s(k, co)l ~< ~'e -~ Ikl/kd (10.7) 

where the singularity at the origin comes from the fact that [see (4.5), 
(4.11), (A.6)] 

- -1  

gs(X, o~)= Z 2Pgp+h)( 2px, 0~) (10.8) 
p = - -  c O  

and the decay rate K is hx independent (see Section 4 and Appendix A). 
We proceed to evaluate the g-function integrals by using them to com- 

pute the momenta of the hard lines: we need one 6 function per hard line 
and we get a volume factor 2-(d+ 1)h~ per vertex if ht is the scale of the line 
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l of lowest frequency among those connecting the vertex to the rest of the 
spanning tree #; the number of vertices contributing the factor 2-(a+ l)ht 
equals the number n -  1 of lines of the spanning tree. After this has been 
done the argument of the propagator corresponding to a hard line in the 
tree # will have the form 2-h~vv~t+ p, where p is a suitable linear com- 
bination of the other graph momenta. 

Supposing that the 2h functions together with vh, ~h, ~h are bounded 
uniformly in h, we shall bound them, when convenient, by a constant M. 
We can then estimate the integrals over the ~;. starting from those corre- 
sponding to the most external lines of the spanning tree # and proceeding 
toward those corresponding to the other lines. Each integration can be 
bounded by C . 2  (a-1)h~ because the gh(2-h~pV~o~+p) multiplied by 
2 (a-1)h~ produces an approximate 6 function on the sphere if C is a 
suitably chosen constant (and in fact if Ipl r 2-h~v,  the integrals are much 
smaller: a basic fact that will have to be used later). This is correct even in 
the limiting case d =  1, when the ~ integration is just a sum over ~ = _+ 1. 

It remains to perform the (d+  1)-dimensional integrals over the soft 
line momenta or over the hard line momenta corresponding to lines which 
are not in the selected spanning tree #. To estimate the integral, one has to 
remark that the momenta which are left after the above integrations are 
free integration variables (they are basically the loop momenta) because 
the tree /~ was a spanning tree, and the propagators are bounded by a 
constant times either e -~Lkl or e -~lkl/ka, which are summable functions 
[-since the integrals over k are ( d+  1)-dimensional integrals]. 

Hence the whole integration process gives a result which can be boun- 
ded by a constant per line times a factor 2 E-(d+l)+(a 1)3h) per line of the 
spanning tree 1~. Collecting the above arguments, we see that we can bound 
a graph with no lines generated by the ~ action by 

EoMmcm H 2["~v/2+3"~l~176 ho 1~ 2h~ 
v )vo  i 

~ E g M m C m 2 h [ ( 2 m l  +m2+4m3-n~)/2 + 3(m2-nel}/2 2(m3+m2+ml--1)+ml] 

I-I 2(by h'v)[(2mlvWm2v+4m3v--n~v)/2+ 3(m2v n~v)/2 2(mlv+m2v+m3v)+ 2+mlv] 

v >~ v 0 
= E o M m c m 2 - h ( n ~ / 2 + 3 n ~ / 2  2)H 2 (hv-h'~)[(n~~176 (10.9) 

v >~ vo 

The formula (10.9) holds for a general graph in which the 9/ operation is 
trivial: note that the factor in front of the product in the last line of (10.9) 
is 2 - h ~  if 6p is the dimension of P introduced in (7.3). Similarly, the coef- 
ficients of (h~-  h~,) in the last product are the dimensions of the operators 
P~ that would be described by the graphs G~. For  the graph under analysis, 
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with four external lines of type ~, the factor 2 h~ in front of the last 
product has value 1 and the rhs of (10.9) provides an estimate of the size 
of the graph, according to its definition in Section 9 (item II). 

Remembering that we are still considering graphs contributing to the 
beta function for the running form factors 2n, we consider now the second 
case: the ~ actions give rise to graphs in which some of the half lines 
coming out of some of the clusters v ~ 9 have changed their original mean- 
ing, giving rise, in the given graph G, to lines of type D or S. We put, 
however, the restriction that the external lines, before the application of the 
5 ~ operation associated with the first vertex v0 of the tree 9, are local lines 
of ~ -+ type. 

We proceed as in the previous case, when no lines were affected by the 
operation. Let/~0 be a spanning tree of hard lines, as introduced before 

(10.6). This time, after completing the relabelings of the graph expressing 
the results of the action of the ~ operations on the clusters of the tree 9, 
we see that some of the half lines may change meaning. As a consequence 
we associate with/~0 a new spanning tree # obtained from/2 o by consider- 
ing each line of #0 and imagining that it connects the two points out of 
which emerge the two half lines composing it after the relabeling. The tree 
/~ is again a spanning tree, as can be checked by taking into account the 
relabeling procedure described in Section 9. 

Let 2 be an inner half line with frequency index ~. We suppose that the 
half line )~ is one of the half lines affected by the .~ operations, so that it 
represents a nonlocal field q~ among those in (7.1). For  the sake of definite- 
ness, we take q~ to be a field of two space-time indices (i.e, q~ r $3): let x, 
y be the two space-time labels of ~. If the other half line merging with 2 
to form a inner line l is supposed, again for definiteness, not to be affected 
by the ~ operation and emerges from the space-time point w, the 
propagator of the full inner line l will be 

2~J'[ g(2~w - 2~y) -g (2~w - 2~'x) ] *~- (10.10) 

where the . z  symbol means that the difference in (10.10) has to be taken 
to order z2. if z;. is the order of the zero in the field D or S that we are con- 
sidering; here by difference to order z, denoted I f ( y ) - f ( x ) ]  *z of a func- 
tion f ( x )  between the point y and x, we mean that the expression is the 
remainder to order z of the Taylor expansion of f ( y )  around the point x 
[see (10.15) below]. To avoid cumbersome notations, the g in (10.10) is 
not given all the indices and labels that one may think it deserves. 

If the half line affected by ~ was contracted with another nonlocal half 
line, the argument would not change, except that one would have to take 
a difference of an appropriate order also in the variables of the other half 
line. 
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Then we can write concisely 

[g(2~(w-y))-g(2~(w-x))]*Z~=g(Zr'(w- x), 2~(w- y))[2~(y-x)]  z~- 

(10.11) 

defining the tensor g with two arguments by the rhs. In the rhs of (10.11) 
the terms written symbolically as powers of z). represent tensors with z~. 
indices, which we regard as contracted with g. 

Let 2 1 = y  and 22 ..... 2p+~=x be the spanning tree path in # 
connecting x to y, so that we can write y - x  as a chain sum: 
( y - x ) = Y , ( 2 i - 2 , + l ) .  

Suppose that (10.11) is substituted in (10.4) and each y - x  is sub- 
stituted by its chain sum and each ( y -  x) z~. is expanded in a product of 
single increments corresponding to the lines of the path in # connecting x 
to y. This procedure generates various terms like (10.4) in each of which a 
propagator of a hard line l of frequency h~ is multiplied by a factor of the 
form 

1-[* (2hx,) z~ (10.12) 
h<hv 

where xt is the vector joining the extremes of the line and with the �9 
recalling that the product extends over a (possibly sparse or empty) subset 
of the set of the scales h less than h~. The precise subset of values is deter- 
mined by the graph. 

The integer zh is bounded by the sum of the orders of zero of the lines 
generating a single contribution in (10.12): this is bounded by 3. 

In fact, if a term 2hx~ is present in (10.12), it must come from the' 
propagator of a line containing a nonlocal half line emerging from a cluster 
v' of frequency h ' >  h, with its space-time indices inside some inner cluster 

of frequency h >/h'. With this remark in mind, an inspection of (7.5), 
(7.6), and (7.8) shows that zh ~< 3. 

Given a hard line I of frequency hv for which the product (10.12) is not 
trivial, let h be the frequency of a half line whose change of meaning due 
to the N? action on the larger cluster vj~< v causes the presence of the factor 
2hxt in (10.12), and let ,~f be the half line which has changed meaning; we 
call ~ the cluster to which it belongs (h = he). Here we recommend drawing 
a schematic picture of the clusters and of the lines involved [see (10.14)]. 
We call p = h~ - h v and write 

2hx~=2 h h~ h~I)2--P(2h~ (10.13) 

SO we see that we can extract a factor 2~(h-% ) from each line contributing 
to the products in (10.12). 



Perturbation Theory of Fermi Surface 597 

Let w 1= vf> w 2 > . - - >  Wq be the set of clusters which the line ")~r 
successively crosses; then 

h ~ -  h -= (hwl - h~,2) + ""  + (hwq - h~) 

, . . - ' ' ' . � 9  

�9 c /  

. :  ".: - 

" - . . .  . . . . . . .  , . ' "  

�9 �9 . . . . .  � 9  

~ (10.14) 

Suppose that there are several lines which have changed meaning 
because of the ~ action and which cross the cluster w and have frequency 
lower than or equal to that of the immediately larger cluster w'. Let z,, be 
the total dimensional gain (see Section 7), of the Wick monomial that is 
represented by the subgraph GN corresponding to w; then one can collect 
out of the powers 2 (h by) a factor 2-zw(hw h~; hence the product of the 
factors (10.12) over all v's can be rewritten 

where So(v, l) denotes a set of pairs of integers (z, p), such that p ~> 0, z = 1, 
2, or 3, and there is at most one pair for each p; S~ l) depends on special 
graphs and, given the graph (as in our case), on the special terms singled 
out in the expansion giving rise to (10.12)�9 

We take out of the graph value the first factor in (10.15) and consider 
what remains. We want to show that all the factors of the other products 
in (10.15) containing the same xt can be put together with the propagator 
of the line l leading to an evaluation of the same graph with more com- 
plicated propagators, which, however, are easy to bound�9 

We first deal with a better representation of the two-argument 
propagators g in the rhs of (10.11). The treatment of four-argument 
propagators is clearly similar, but for simplicity of exposition of an already 
intricate discussion, we are supposing (as stressed several times above) that 
there are no four-argument propagators, i.e., no line results in a contrac- 
tion of ~-affected half lines, or, in still other words, no contraction DD or 
DS or S S  is present in the considered graph. 
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Rather than carrying around propagators with more than two 
space-time indices, we write (10.11) via the interpolation formula 

f2 ( 1 - t ) z - 1  [ x + t ( y - x ) ] ( y - x ) Z d t  (10.16) 8zf 
[ f ( y ) -  f ( x ) ]  *~= -(ff---~. 8x z 

so that the function g with two arguments in (10.11) can be replaced, by 
using (10.15), by a new function g with one argument considered at an 
interpolated point. 

Let 1 be a (hard) line in the spanning tree # of scale h~ and let 
xt be the vector joining the two extreme points ofl. Collecting all terms 
containing the same x~, we see that (10.15) will allow us to consider that 
the propagator of l will have the form 

g(2h~(X,+ t~r,)) [ I  [2  P(2h~Xl)] z (10.17) 
(z,p)e So(v,I) 

where t~ is an interpolation parameter in [0, 1 ], and rt is the vector joining 
the endpoint of l, from which the nonlocal half of l emerges, and the other 
space-time point of the nonlocal half line; of course l may be composed of 
two local lines: in this case we have no ttr t term in (10.17) and we take re 
equal to zero. 

More precisely, our value of the graph G on the tree 0 can be com- 
puted by pretending that each hard line has a propagator given by (10.17) 
and then: 

1. Integrating over the interpolation parameters with respect to a 
suitable measure on the t's, giving measure ~< 1 to the whole space of the 
interpolating parameters [-and such a measure has a density which, by 
(10.15), is a product of powers of t-variables]. 

2. Summing over all the possible choices of the sets So. 

3. Multiplying the result by the first factor in (10.15). 

If r t r  we introduce ~t= 2h"(xt+ tlrl) and rewrite (10.16) as 

g~.({,) H [ z - p ( { , -  2h%r,)] z (10.18) 
(z, p)  E S0(v, l) 

The monomials 2 P ( ~ t - 2 h % r S  can be developed and one gets many 
terms, for each of which one can pretend that the propagator is 

H H '2 2h-' 1 ,10,9, 
(z0, p0) e So (z', p ' )  E S '  
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provided that, after the evaluation of the graph is completed, one integrates 
over the interpolation variables and sums over the possible choices of the 
sets So and S'. 

We now remark that r~2 h~ can be again rewritten as 

2 - (hl, - h~,) y, 2h~x 
x 

where x is the vector in the spanning tree # in the path leading from one 
to the other of the two space-time indices associated with the nonlocal half 
of t; ~ is the cluster out of which l emerges at the scale h~ on which the 
action of ~ changes its meaning. We see that h ~ -  h~ ~> 1, and that h~ ~< h~,, 
if h~, is the frequency of the line associated with x. 

Hence, developing the monomials 

(2 P'2h~r,)Z'-(2 P'~ 2h~x-2 ~h~ h~) ~'' 

we find that the computation of G can be made by integrating over the 
interpolating variables t and summing over suitable So, St the value of the 
graph in which l has a propagator: 

(zo, Po)e So (zt, p l )e  S1 

with So, $1 defined as above; this means that the product over l of the 
(10.18) equals the product over l of (10.19) if So, $1 are conveniently 
chosen (for each l). 

We can now repeat the argument until we can reach a situation in 
which the xl are replaced by the corresponding ~l, which happens sooner 
or later because the innermost lines of our graph are necessarily built with 
pairs of local lines. 

At the end of the process we shall be able to compute the graph value 
by taking the hard lines l to have propagators 

g(h~'[2h~(x,+tzrt)] fI { ~I 2-P-J[2h~(x,+tJ~)] ~} (10.21) 
j E J  (z,p) eSl., 1 

where the above products run over a finite set of indices, depending, 
however, on the particular case considered (i.e., graph, tree, selected 
terms, etc). 

The soft line propagators have the form g~<h~'~[2h~'(Xt+ ttrl) ] with no 
extra factors. Of course l may again be composed of two local lines: in this 
case we take r~ equal to zero as above. And after the evaluation of the 
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graph with the above propagators one has to integrate over the interpola- 
tion variables (with respect to a measure with total variation bounded 
by 1) and then one sums over a convenient set of choices of the sets Sz/  
since clearly very little control can be hoped for the choices of such sets, we 
shall bound the result by considering them completely arbitrary. 

The main property of (10.21) is that, if summed over an arbitrary set 
of choices of So, $1 ..... it still is a function of x---2h~ + ttrl) which is C ~ 
and decays fast at o% with all its derivatives, uniformly in h~ and uniformly 
in the choices of the sets of Sj to be used in the sum. 

The reason is quite simple and we just check here the bounds for the 
function itself (for its derivatives one just differentiates and repeats the 
argument). By taking the absolute values in (10.20) and summing over all 
sets So, $1 ..... we find a bound 

]g~'(h~)(x)l [ I  1+  ~ 1(2 p J x ) ~ ( 2  p Jx)l z (10.22) 
p = 0  j = 0  z = l  

where we only use that it is possible to write 

g(h)(x, co)= g(h)'~(x, ~) f i  f i  ~ ( 2  j Px) (10.23) 
j = O  p = 0  

with g(h)'~(x), ~ still analytic in a strip around the real x axis and 
uniformly bounded and decaying exponentially fast at infinity together with 
any pre-fixed number of derivatives [-see (A.5) and the holomorphy argu- 
ment following it]. To see what is going on, let us consider the model in 
which the gh are supposed to coincide with their asymptotic form (A.7) 
and (A.8): we see in this case that the product of the ~ ( x )  in (10.23) could 
be taken: e x p [ - e  Y~f~-0 (2 j px)2]. 

We can evaluate the graph value using again the Fourier transform 
and we see that, if we call k the momentum variable associated with the 
line x, then we have extra momentum tk entering or leaving the vertices at 
the extremes of the line defining r, if t is an appropriate interpolation 
variable. 

But we can write r as the sum of the vectors associated with the hard 
lines in the spanning tree /~ connecting its two extremes, so that we can 
think that the momentum tk is in fact added to all the hard lines in / ,  con- 
necting the two extremes of r. It is therefore clear that it only affects the 
construction discussed in the simple case (with no nonlocal lines in it) by 
changing the values of some of the momentum variables k appearing in the 
hard lines: however, such k's disappear when one performs the integration 
over the (o's and one is left with the same integral over the loop variables; 
the conditions under which this is correct are that the propagators in 
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(10.21) have the same properties used in the easy case, and that the sum 
over the subsets of the sets So, $1 .... can be performed. The two conditions 
are met because of the bound (10.22) and the analogous bounds on the 
derivatives. 

This shows that we get, in this case, the same bound found in the 
absence of the ~2 generated lines with different constants and an extra 
factor [Iv 2 z~(h~'-h~l, where z~, is the total dimensional gain of the vertex v 
and v' is the vertex preceding v in the tree 0. 

Hence the size of the relevant graph leading to (10.4), i.e., the integral 
in (10.4), is bounded by the rhs of the following expression: 

' ( hr[niov/2+3nih'/22(svl)])(~I bY') )(El ) Eo MmC~ I ]  2 '  2 (h . . . .  2h,~, 
v)v 0 / v)vO 

<-Eo MmCm2-h~p ~I 2-(h~'-ht")P~' (10.24) 
v)vo 

by the same argument given in (10.9); here p~=(n~ov+3n~,)/2-2+z,, 
where z v is the dimensional gain in the half lines emerging from the sub- 
graph G,, @ is the dimension [which is in fact 0 in our case; see comment 
following (10.9)], and M is introduced after (10.8). 

The bounds on the size Co of the graphs can be extended to the 
estimate of the bounds of the sizes CN, N> 0: the result is a simple consc- 
qucnce of the above analysis. The CN bounds have the same form as the 
Co bounds with new constants C, D. The obvious modifications of the 
above analysis imply that the numbers z, bounded by 3 for Co, are now 
bounded by 3 + 2N, and the final constants D, C depend on N. The fact 
that the external momenta are kl,...,k, rather than zero makes no 
difference, as the value of the external momenta was never used in the 
Co bounds. This can be interpreted as saying that the effective potential 
kernels have a short range, uniformly in h. 

The above analysis can be immediately extended to cover the bounds 
on the CN size of irrelevant graphs with any number of external lines (local 
or not): the final bound looks exactly the same as (10.24) because of the 
extra factors present in this case in the definition of the size (see Section 9, 
item II); the definition in (9.3) has just been set up, in the general case, to 
make the latter statement true as a consequence of the above analysis, 
thereby providing a convenient way of summarizing the results of this 
section. 

The bounds for the relevant graphs with two external lines which, 
before the action of the 2 '  operation relative to the first nontrivial vertex 
Vo of the tree 0 represent graphs with two external lines of type ~ + ~ - ,  are 
performed in a identical fashion, again leading to a bound like (10.24). The 
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constants in all the above bounds can be taken to be the same, and h 
independent. 

Therefore the cases that have not yet been treated are those corre- 
sponding to graphs contributing to the relevant part, which, before the 
localization Y relative to the first tree vertex, have (a ) four  external lines, 
one of which is a D + line, while the three others are ~,-+ lines; (b ) two  
external lines, one of which is a D + line. 

Looking at (7.6) and (7.8), we see that the above two cases are 
precisely the ones for which the application of the 5r operator produces 
differences of local terms evaluated at different points, say xl and x2. 

We can proceed to bound their contribution to the beta functional in 
the way followed above, simply estimating each term in the difference of 
local terms without trying to exploit possible cancellations between them: 
i.e., we give up using the fact that when xl = x2 such terms vanish. 

Then a bound like (10.24) still holds: however, the numbers z~ 
associated with the chain of clusters v containing the two points xl ,  x2 on 
which the 5r operator  generates the local terms are smaller by one unit 
compared to those that would be a priori necessary to make the coefficient 
p ~ = ( n ~ + 3 n ~ o ) / 2 - 2 + z ~  of h~-hv, greater than or equal to 1. Hence, 
some of the p~ corresponding to vertices v containing x~, x2 m a y  be zero 
and therefore they would ultimately produce logarithmic divergences in h 
when the summation over the h~ is performed to compute the final expres- 
sion for the contributions to the beta functional. 

This mild lack of  uniformity in h of the beta functional is the best we 
can do without taking into account special new features. Since the unifor- 
mization of the bounds will be done by using different mechanisms in the 
d =  3 and in the d = 1 cases, we discuss it in the next section. 

11. U N I F O R M I Z A T I O N  OF THE B O U N D S  ON THE BETA 
FUNCTIONAL.  LOOP I M P R O V E M E N T S  

To complete the perturbative theory of the beta functional, we have to 
improve the bounds of Section 10 in the two remaining cases (a), (b) 
described at the end of Section 10. Also in this section we shall consider 
explicitly only the case in which there are, in G, only relevant vertices. 

We start by Considering the case of graphs with two external lines, i.e., 
Contributions to the beta functional for v, c~, ~. In this case it suffices to 
remark that the constants vh, c%, ~h are independent of the values ~o, co' of 
the quasimomenta of the fields in the Wick monomials. Therefore we can 
evaluate the contribution to the variation of v, ~, ~ by choosing to compute 
them when co = to', 
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Consider first the contribution coming from the application of 50 to a 
graph which, before applying 5 ~ produced a Wick monomial  Df~,o~,x3,o,. 
Using (7.8), one sees that the 5 ~ action produces an operator, for to = to', 

f /)(X 1 - -X2 ,  X 1 - -X3 ,  to.O) e ipv(*l-x3)'~ dx 1 dx 2 dx 3 [:@+XlO~@~llO):- :Ox+2~.~tx-2to: 

(11.1) 

where v is a suitable kernel. The (11.1) contributes both to v and to ~, a. 
The first contribution arises from the terms ~+lp and is 

f dx dx 3 1)(x I - x 2 ,  x 1 -x3,171)) e ipF~ 

- f  dxldX3t~(Xl-X2, Xl-X3, to)eipv~ (11.2) 

The contribution to ~, r is not zero because of the ( x 3 - x l ) ,  ( x 3 - x 2 )  
factors, which break the symmetry between 1 and 2 in the fields: by adding 
and subtracting suitable terms we see that the contribution reduces to 

f d . / Y l d X 3 v ( x 2 - x  x 2 - - x 3 ,  to) eiPV~ + =@ , ):~Px2,o IP x20,: ( l l .3)  

In this case we do not get zero; however, we see that we can explicitly 
exhibit the factor ( x 2 - x l ) .  Repeating the estimates of Section 10, we see 
that we can bound the contribution using (10.24), in which we take n~ = 1, 
n~ = I with p~ ~> 1, getting a uniform bound as h --, - o e .  

For the same reason all the other contributions to c~, ~, v that one 
might expect from (7.8) and not taken into account in Section 10 vanish 
(as the 1, 2 indices appear  symmetrically in the fields). 

Consider now the case of graphs with four external lines, i.e., consider 
the contributions to the beta functional for 2h. We see that the above 
cancellations occur only if the toi are in a Cooper pair configuration: 
(-Ol = -o)2;  0)3 = - (~ However, we cannot infer from the gauge symmetry 
that it is enough to consider 2h on such configurations to know it on all 
the others. 

There is one remarkable exception to this situation: namely if d =  1 
and the spin is zero, it turns out that the Cooper  pair configurations of 
quasimomenta do determine the 2h: simply because they are the only con- 

+ + figurations for which Ox,ol Ox,o2Oxo,3 x,o4 does not vanish identically (by the 
exclusion principle). Hence if d =  1 the contributions to the beta function 

822/59/3-4-5 
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due to the cases (a) and (b) considered above can be taken to vanish and 
we have uniform bounds even in the contributions to 2h. 

The above remark suggests introducing the notion of Cooper pairs of 
quasiparticles with quasimomenta _+01. We shall say that a local 
fourth-degree term like 

I =  f 2 ( 0 1 1 ,  012, 013, 014)  e ipr(''l +,,,2-,,,3- oJ4)x 

+ + t ) -  X :~lxttll~]Xt02 XOi3ffJXOi4: 1--I d(l}j (11.4) 

contains a component ~c I of interaction between Cooper pairs defined by 
setting 

2(01-111; 01.13) = 2(0111, - - ( I l l ,  01113, --01.13) 

P c ) ~ ( 0 1 1 ,  012 ,  013 ,  014)  = 4 1 1 2 ( 0 1 1 ; 0 1 3 ) - - 2 ( 0 1 1 ;  0 1 4 ) - - ) ~ ( 0 1 2  ; 0 1 3 ) + 2 ( 0 1 2 ;  014) ' ]  

(1L5) 

and 

P c 2( 011, 012 , 013 , 014 ) eipF(~ + ~2 - o~3 - to4)x Nc I O 

• :~bx+,Ox+2tPx~3qJx.,4: [ I  d %  (11.6) 

Calling LPc = ~ c ~  and ~ c  = 1 -  ~ c  = ~ + (1 - ~ c ) S ,  we can try to repeat 
the analysis of Sections 6-10 using ~c ,  ~ c  rather than ~ ,  ~ .  

The ~ c  operation is quite complicated (in the fourth-degree part) if 
expressed as an operator on the fields: 

" + § -- , 
c.O x, o,, ~'x2,,2 ~'x~,3 O xo,4. 

= a(01, + 012) a(01, + 01,) I f  d d <  

. + + ) + - -  
x.(0x. , ,1-0x,-o, l  0~,o,'2(0x,~,~-02, o,~)~'x<: (11.7) 

x e ipF(% + ~ 2 -  ~3 o~)x~ 
! 
_IAS 

~Q.Q~- + - . . i / /+  S 1 �9 C.@xltOl~JX2fal2. ~ . r X l ~  1 X2Xlt02" 

It is easy to check that this time s vanishes on any fourth-degree 
monomial containing at least one nonlocal field or a ~ field: this means 
that the problem mentioned above, due to the fact that the latter property 
does not hold for the ~ operation [by (7.6)], will not arise. 
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But, having changed the rules of the game, we must reexamine 
Section 10 to check if it still would work with the new definition: it is not 
difficult to realize that it does not, unless we modify the assumptions on 
12hi strengthening it. We shall come back to this approach in Section 14, 
where we discuss our conjectures about the flow generated by the beta 
functional. Here we adopt a different viewpoint. 

We consider the action of ,~, 2" on Wick monomials which appear in 
the graphical representation of the effective potential. The linearity of 2" 
has been used so far only on the second-degree terms; for all other pur- 
poses we could as well use a different definition of 2". We could define it 
as a nonnecessarily linear operation acting on each of the operators that 
are produced via the graphical rules of Section 9. See the concluding 
remarks to Section 7. 

In this way we lose gauge invariance: so far the use of gauge 
invariance has been just a way of getting rid of unwanted terms in the 
second-degree part of the effective potential. Later we shall use it again to 
analyze the pair Schwinger functions: but we shall need it only in the 
second-degree terms of the effective potential. Hence we can modify the 
definition of 2 '  when it acts on the fourth-degree terms of the effective 
potential, keeping it as before when it acts on the second-degree part. The 
point is that the 2" can be easily modified so that the above problems on 
the beta functional disappear. 

The choice will be simply to take 2" to be zero in the cases (7.6) and 
to be the same as before in all other cases: consequently 2" will vanish on 
all fourth-degree monomials which involve nonlocal field or D0  fields. 

It is clear that this slight modification does not introduce any new 
problem in Section 10 and all the estimates there remain unchanged. The 
reason is that the terms containing a D + field, like the ones in (7.6), 
already have the correct power counting and the subtraction (7.6) is only 
necessary if one wishes to keep the linearity of 2" on the fourth-degree 
terms. We do not lose the linearity (hence the gauge invariance) on the 
second-degree terms. 

With the above modification of 2", ,~ on the fourth-degree operators 
we have completed the proof of the uniformity of the beta functional 
bounds in terms of the frequency parameter h, i.e., of the scale of the root 
vertex of the tree. 

We now proceed to try to identify classes of graphs whose contribu- 
tion to the beta functional can be shown to be bounded by 

2(l--~l)p~,th,-h'~) 
2~hc7 'O~ I] (11.8) 

v Sv[ 

for some E, e ~ > 0; i.e., we want to see if we can make use of the fact that 
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p~ ~> 1 and of the fact that in the theory of the beta functional one only 
needs, as is well known, (18) that Pv ~> e. 

A large number of graphs can be shown to obey the improved bound 
(11.8). This is due to some basic inequalities or remarkable cancellations 
which we call loop improvements, as they manifest in a nontrivial way in 
graphs with loops. They play a role not only in the theory of the beta 
functional (which is greatly simplified), but in the theory of the Schwinger 
functions as well (see Section 12). 

Consider first the case d = 3. In this case one makes essential use of the 
following three-quasimomentum inequality, which follows by simple phase 
space considerations [-see Appendix B for the general technique, and (B14) 
for a check ]: 

f ~h,(~l +o~z-(O3+lc,)dOJl d~2doJ3~Cx2 h', VK (11.9) 

We stress that this holds only if d >  1; here 6h(k)=2-2hg(2-hk) ,  kER  a, 
with g a short-range function. 

Recall that a basic estimate in Section 10 was the bound of 

f 6h,(o~+K')do~<~C1, VK' (11.10) 

where co was the quasimomentum of a hard line of frequency h' associated 
with the approximate delta functions 6 h, and K' a suitable linear combina- 
tion of momenta and quasimomenta; see, for instance, the comments after 
(10.8). 

Then we see that we can gain a factor 2 h' by using (11.9) if we can 
show that K' in (11.10) has the form o ~ + c o 2 + K  with ~1, ~2 being 
quasimomenta of internal lines which are not in the spanning tree. We 
might even be able to gain similar factors several times by applying the 
remark to different hard lines of the spanning tree: provided, however, that 
we are able to identify distinct quasimomenta ~1, o.) 2 for each different 
hard line of the spanning tree for which we want to obtain a gain. 

We use the above inequality to show that in bounding some graphs we 
can improve the bound of Section 10 [-i.e., (10.24) in dimensionless form, 
without the factor 2 h6p] 

2 p~h~- h~) 
(11.11) MmCm - 1D [I sv ! 

by a factor 2 h~ where ho = h v for some v. Clearly this immediately implies 
the validity, for the given graph, of the bound (11.8). 

We begin by examining the case of the contributions to the effective 
potential from graphs (relevant or not) with two external lines. We fix a 
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tree ~ and a graph G with two external lines. Let Vo be the first nontrivial 
vertex and let vl ,..., vs be the tree vertices immediately following v0. The 
frequency of Vo is h + 1. We do not consider local contributions arising 
from the terms which we have shown to cancel when the external quasi- 
momenta  are equal. 

There are two possibilities to examine. The first is that one of the 
internal lines of frequency h connecting the cluster v l to the others is essen- 
tial for the connectedness of the graph, i.e., cutting it, the graph becomes 
disconnected: this case is the easiest when it cannot be reduced to the next 
one and we therefore postpone its treatment. 

The second possibility is that none of the inner lines of frequency h 
connecting Vl to the other clusters is essential for the connectedness of the 
graph. This means that if one shrinks to a point all the subgraphs inside 
each of the clusters vi, the graph G that one obtains contains at least one 
loop. 

Suppose that in (~ there are at least two lines l, l ', with quasimomenta 
~o, co', which are not in the spanning tree. Then it is clear that one of the 
approximate  delta functions associated with the hard lines of the spanning 
tree must have the form 6h(+tO+tO'+_tO~+K) with to1 being the line 
quasimomentum, for a suitable arrangement of the signs. Hence we can 
apply (11.9) at least once and we improve the final bound by a factor 2 h. 
Hence we are left with the case of G with just one loop. It is easy to see 
that we can repeat the argument even in this case as long as the graph G 
has at least two loops, even if one of them is inside one of the vj.. The 
conservation of total momentum at each vertex implies, in fact, that two 
at least of the quasimomenta of the lines inner to the vj but not on the 
spanning tree must appear  also in the momenta  of a hard line on some 
scale ho; hence one can easily check that (11.9) can be applied at least for 
one such line and improves (11.11). 

Therefore the only case (if the second possibility foreseen at the begin- 
ning is verified) in which we have not proved the presence of an extra 
power of 2 h~ in the bound (11.11) is when the graph G has only one loop: 
clearly this can happen when it contains only one vertex with four lines and 
all the others are two-line vertices. This means that only the contributions 
to the effective potential of degree two in the fields or to the beta functional 
for ~, (, v which are linear in 2 and at least linear in ~, (, v may not 
have an extra factor 2 h~ in front of their bound (11.11). The possibility 
of treating this case is based on a remarkable cancellation which is a 
generalization of the one exhibited in a very special case in the calculation 
in Appendix B. 

We first replace all propagators  with their leading expressions; we also 
replace the operators  @,~ by their leading expression rio& All the correc- 
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tion terms contain at least one 2 h' for some h' and hence by the remark 
following (11.11) we see that we get the bound (11.8) on this part of the 
estimate. 

The second operation is to undo some of the ~ concerning the internal 
clusters according to the rule explained below. Then, if the first cluster 
bears an ~ label, we replace the nonlocal external field in the expression 
of the operator associated with the graph by the appropriate tensor 
describing the structure at contact of the zero of the nonlocal fields [see 
(7.3)]; then we multiply by the appropriate 2 h and by the factors 
necessary to take the Fourier transforms in (9.3). The resulting expression, 
integrated over the space-time indices distinct from the localization point, 
provides the estimate for the Co size of the operator. If the first cluster 
bears an ~e label, we simply write the corresponding expression for the Co 
size. 

For  simplicity we examine the case of a contribution to the beta func- 
tional v term (i.e., a graph with an L~ ~ operation selecting a 0 + ~  term). 

Since our graph is topologically very simple, we can represent the 
various terms arising in undoing the N operations [~<6 n, by (7.5)-(7.8), if 
n is the number of two-line graph elements] rather naturally in terms of 
new graphs constructed as follows. 

We draw a one-loop graph with s < n +  1 vertices each of which 
represents one of the s maximal clusters of the tree. If v is one of the 
clusters with two external lines, we make a choice and either we leave the 
graph as it is, deleting the N label, or we draw a hanging chain emerging 
from v with sv vertices representing the s~ clusters inside v, the first being 
v itself and the others labeled from 2 to sv. Inside each of the hanging chain 
vertices we imagine drawn the corresponding subgraph. 

Similarly, if the cluster v has four external lines, we see from a simple 
analysis that one of the four has to be a Dxy line which, once undone in its 
two ~ fields, can be represented naturally by two graphs the first of which 
is the starting one without the N label on v. The other is obtained from it 
by imagining the external line corresponding to the first point x of the Dxy 
field as emerging from the second point y of the D field, while the chain of 
the external line maximal clusters, linking x to the maximal cluster inside 
v with four external lines, will again be replaced by a hanging chain of 
vertices. Inside each of them we imagine drawn the corresponding chain 
graphs. 

We undo the N operations involving the maximal clusters; then we 
undo the N operations concerning the (only) cluster of the next generation 
with four external lines and so on until there is no longer any cluster with 
four external lines which is not a point. 

The value of the factor contributed by each hanging chain is easily 
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estimated using the results of Section 10 and depends on the term that is 
selected when undoing the N operation which generates the hanging chain. 
If the N operation concerned a two-external-line cluster, the local term that 
appears when undoing it (which generates, in the graphical interpretation, 
the hanging chains in the graph) corresponds to an operator n.Oxo,0x,o." + - �9 

+ ~ - (which has dimension c5 = - 1 )  or to an operator b:~x,~ 0x,~: (which has 
dimension c~ = 0). If N concerns a four-external-line cluster, the local term 

l + + - " corresponds to an operator :Ox,~Ox,~2Oxo,3Oxo,4. (which has dimension 
6 =0). 

It is clear that the analysis leading to (10.24) implies that the coef- 
ficients n, /, b can be bounded by 

Mm~cmv2_~hI1- I 2 (;'w-h"'~ w=~ Sw! 2~'(h~-h~ (11.12) 

using the notation of Section 10, (10.24), with the above values for c5. The 
(11.12) simply takes into account the missing factor represented by the last 
term. 

Hence we see that iterating the above arguments to undo the inner 
operations (when prescribed), we are reduced to the main problem of 
estimating a one-loop graph, computed on a tree with no ~ operators 
acting on the inner vertices, with the proviso that we have to multiply the 
result by a product of 2 ~~ h~,~ over an unspecified set of frequency jumps. 

To estimate a one-loop graph with no N operations acting on the 
inner clusters and two-line vertices, we essentially compute the integral 
explicitly. We want to show that the Co (and C~) sizes of such graph can 
be bounded by 

M"C"2hn!4 1--[ - -  (11.13) 

This, together with (11.12), would show that we have an extra 2 h in the 
bounds of the one-loop graphs with two external lines, at least if are willing 
to pay the price of the n !  4 and of the frequency jump damping factors, 
which, in fact, are with the wrong sign and provide no damping at all. 

We are, however, interested in resumming all the aboveterms as we 
want the estimate of the full expression with the ~ operations not undone. 
For such sum we have, from the previous work, an alternative estimate 
(11.11), with no factorials and with the correct damping factors. Hence we 
simply interpolate the two bounds [the number of terms obtained by 
undoing the N operation is not very large (~<6~)], using an interpolation 
parameter e < 1/4 for the part bounded by (11.13) and ( 1 - e )  for the part 
bounded by (11.11). And we find almost (11.8): we still have the factor n! 
which should not be there. 
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But there are very few, at most O(1-[v sv!), graphs with only one loop 
and we can still say that (11.8) holds if, to avoid notational problems, we 
decide that the one-loop graphs have a value which is the previously 
defined one but divided by n! and, to compensate, each graph is repeated 
n! times. Of course this is only a notational trick and if one wished, one 
could continue distinguishing the one-loop graphs from the others. 

To prove the above claim (11.13), consider a one-loop graph with 
n + 1 vertices divided into a hierarchy of subgraphs according to a given 
tree0. We suppose that no ~ or N operation is performed on the 
operators representing the subgraphs. Suppose also, again to simplify the 
analysis by avoiding trivial cases, that the graph contains no 2-insertions 
on the external lines (a case that is very easily discussed after the main 
problem on the loop integral is solved). 

We note that the Co size of such a graph is obtained as the product 
of the combinatorial factor Eo = I-Iv 1/s~ ! times: 

[-n+l 1 2 h f L~=l 2hJ~'2 j e~ s ghj(Xj--Xj 1,O)j)C -ipF(xj xj l)mJdo}j 

x20 pJ dx l . . .dxn  (11.14) ~j 
1 

where fU is either the identity or the 9,  operator on the coordinate xj or oj 
the o s �9 0=. operator and, correspondingly, #} is 2~sv~j or ~:  or e~j, where 
~ J ~ ) 
h s is the scale of the j t h  vertex. In general hj > hi, which is the scale of the 
propagator associated with the line from xj_~ to x s. The vertices are 
labeled from 0 to n + 1 - 0 following the arrows of the loop lines. 

The (11.14) can be rewritten more explicitly by using the Fourier 
transform expressions for the propagators (we fix the parameter 

fl = p v / m  = 1 ): 

fdk(I-Ido,}jo~jdo~j)"can+lgh-hn+l ~I g~j-hj 
J~Jv 

x (iko+o~k) e-% k2 I-I 2 2hs(ikoj+o~jkj) e ~Jk~(o~jkj)~J (i)~oj) bj (11.15) 
Jr Jo 

where as-, b j=0 ,  1; M is a bound on v, c~, z, 2; r e  [ - 1 ,  1] depends only 
on the o~-variables; J~ is the set of loop lines entering a vertex with running 
constant of v type; Jo is the label of the line l0 from xj0 ~ to xj0 which is 
not in the spanning tree of the graph; the interpolation parameters c~ s 
[see (A9)] are in [1/4, 1] for all jv~jo, and for J=Jo, C~jo6 [1/4, 1] or 
% s [1, oo ]. The actual values of aj, b s depend on the type of the j t h  vertex 
(aj = 1 if the vertex is of type e, and bj = 1 if it is of type if; the a, b vanish 
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otherwise). The momenta kj. can be expressed 
quasimomenta {oj of the j t h  line (from xj_ 1 to xj) via 

in terms of the 

2+kj = 2hk + {9 -- <~j (11.16) 

where k, {o are the momentum and quasimomentum of the joth line. 
The ~/with j v a Jo play no role and will be set equal to 1 to simplify 

the analysis. Some care has to be devoted to :%, which we denote by e. 
We set N =  ~2j 22(h-hi)~ > 1 (since there is at least one more line of fre- 

quency h, besides lo). We then express the inner momenta k / in  terms of k 
using (11.16) and we collect all the k 2 in the exponentials after developing 
the squares. We also collect in the exponentials all the terms linear in k and 
we perform the linear change of coordinates necessary to eliminate from 
the exponentials the terms linear in k. Using the notation 

s 2 +({o - {o/), e /= 2 h hj 

2 W = ~2 ~p ~"~p N =  ~ ep, 
P:/- Jo p 

(11.17) 

we find, after some algebra, that the integral expressing the Co size of the 
considered graph can be written as the combinatorial factor E o = FI~ 1~st,! 
times: 

M " + ' 2  h h.+lI-12~J-hJfdk~d~do}~(Ujo2-2hJd{oj)/~j~ / 

p 

x H {e/[iko + m+k -- r + N)]  + o}+n/} 
J 

• H {e/[{ogk - {ojw/(= + N)]  + {ojn/} H (ie:ko) 
J~ Jr 

(11.18) 

where we denote Jr, J~, J~, respectively, the set of lines ending m a vertex 
with running coupling of type v, ~, ~. 

We rewrite {oj as ({gj-{o)+{o and the ik o in the last product as 
(ik o + {ok ) -  ok. Then we develop the sums inside the products to isolate 
the contributions of the forms 

(iko + ok) ,  ({o - {oj)k, {ow 

(o} - {o/)w, 2hif~ 2 = -2{ojf~j = 2{o~j 
(11.19) 
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After further algebra we find that (11.18) is a sum of terms equal, up to a 
sign, to 

P 

where Xq are subsets of the set of the n + 1 indices L and each index in Xq 
can have a multiplicity: in the latter case this simply means that the term 
with index j has to be raised to a power equal to the multiplicity. 

The expansion of the products in (11.18) allows us to find the rules to 
construct the sets Xq. In fact, by inspection of (11.18), we see that we can 
define five suitable disjoint subsets of the set of the n + 1 indices denoted  
J ] ,  s = 1,..., 5, and similarly J~ can be broken into five sets J~, and Jc into 
two sets J~, so that 

x ,  = s~ ~ j 1 ,  x4  = j4  ~ j~  

Xa=J~uJ~,  X s = J ~ J  4 (11.21) 

x3 = J~ ~ J~2, x6 = J~ ~ J~ 

and each point in Xq has multiplicity equal to the number of times it 
appears in distinct sets in the rhs. 

The discussion of (11.19) is simpler than one might fear. The quadratic 
form in the fa's in the exponential is bounded below by :r + N). This 
means that after performing the k integrals we bound ~ j  by [-(e + N)/e] 1/2. 

The evaluation of the ko integral is done by the well-known formula 
for the Hermite polynomials Hp(kl) [-with weight e x p ( - k ~ ) ] :  

:kiP: Hp(k,)=f k2 dk~ (11.22) - e-  o(iko + k l )  p ~1/2 

(11.20) 

where the polynomial normalization is that the integral of H i with weight 
e x p ( - k ~ )  is 2 Pp! (Wick rule). 
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Hence, changing the variable (c~ + N) 1/2 k -* k, setting t /= (c~ + N)/c~, 
and using t g ( o ~ - ~ ' ) =  (o1- o1')2/2, we can rewrite (11.20) as 

[ ]f~c~dc~dk M"+I 2h-h"+1 I ]  ( 2~j hi) (~+N)2do ~[exp(_k2)] j~J~, 

(~F]) 1/2 :]Ij~X2 ~jk(cd~-O3j)]-~)l-/2 -A 

J 

x /H AL/  5 z ' l  2r/J[_,+x 6 (~q) A (11.23) 

It is easy to check that, after performing the integral over k, using a 
suitable fraction of the quadratic form in the exponent, and denoting by Co 
a suitable constant: 

1. If X 3 is not empty, we can bound the product over X3 by 
(I-Ij~ x3 Co 2h'~-1) IX31!. 

2. If x4 is not empty, we can bound the product over X4 by 
(2%o~ 1 )]Xa] iX4[ ! . 

3. If X5 is not empty, we can bound the product over X5 by 

Hj x5 + 
Moreover, it is important to remark that: 

4. At least one of X~ and X4 is not empty. See (11.18) and use that 
the Jo factor contributes only to the products over X~ and X 4. 

5. In performing the k integral, the Wick contractions (which we use 
to evaluate the Gaussian integrals) involving X~ and 3(2 or X 2 and 
X 6 or X2 and X 2 itself can be bounded [again using a fraction of 
the quadratic form in the exponential and the fact that such 
contractions are proportional to ( r162  (~-r or to 
(r - o~j) 2 ] by a factor 22hJ/c~ per contraction. But if we consider the 
contractions between X~ and X 6 we only get 1/:r per contraction. 

Then we see that we always find a factor 2h'/~ at least for each of the 
~<(IXxl + IX2l + lX3l)! 1/2 Wick contributions to the Gaussian integral, 
provided we discard the only possibility which, by the analysis of the above 
items, does not provide a factor 2h'/a, namely when all the contractions 
involve X~ and X6 and X2, X3, X4, Xs = G;: but it is easy to see that in this 
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case IX1] > I)(61 and the integral is identically zero by the orthogonality of 
the Hermite polynomials. 

We are left with bounding the e)j integral: for it we still have the quad- 
ratic form to use. By splitting it in six equal parts, five will be used for the 
bounds in the above items. Then the remaining sixth part will be used to 
perform the integral over the t~j and to bound it by [(e+N)/c~]n~< 
( N + I )  n. From the bound of the X 5 factors we also get at most 
[(c~ + N)/ct]n<<. (N+ 1) ~. Hence the total expression (11.14) is bounded by 

Mn+lc~[2h-h"+lI- I (2 ~j h01n!e2h' (11.24) 
J~Jv 

At this point we go back to Section 10 and check that the term in square 
brackets is 

17 2 - (h~ - h~,)(o~- zv/ ( 11.25 ) 
v 

This is so simply because, having undone all the subtractions, we miss the 
terms expressing the dimensional gains zv ~<2. Hence we can write (11.24) 
as (11.13) [recalling that the combinatorial factor ~ v  1/sv! was taken out 
in (11.18)]. 

It is interesting to remark that, if d = 1, the above analysis also applies 
and in some sense works even better. In fact it is easy to see that a 
one-loop graph in which the quasimomentum is not conserved along the 
loop is necessarily of order O(2~'). Hence, one can consider the case in 
which the quasimomentum is conserved along the loop; in this case, 
however, the terms with co-o~j are missing and we see that the above 
integral (11.23) simply vanishes identically. Hence, if d = 1, we do not even 
have the n? to worry about and we have, in all one-loop graphs, a simple 
extra factor 2 h', so that (11.8) holds with e = 1. 

Having treated the graphs with more than one loop and those with 
just one loop, we are left with the simple case of the chain graphs. Of 
course such graphs are very trivial compared to the above. 

Such graphs must contain one line of scale h with momentum equal to 
its quasimomentum. It is easy to check, if the two half lines composing 
the line represent ~ -+ fields, that the propagator of this line generates, by 
the mechanism discussed in Section 10, an approximate delta function 
6h(o~-m').  Here co' is the line quasimomentum and e~ is the external 
quasimomentum of the field of minus type. Then 6 h ( ~ -  o~') satisfies 

r I d ~  e _ ~ 2 - 2 h ( ~  _ o~1)2/72 
t~h(O.) 1 --till)= const . 2  3 h ( ( I ) - - ( O 1 )  ~ 1,01 J1/4 O~ 2 

~< const �9 2 -  3h(~% _ c0)2 e 2-2~(,0~ ,o)2 ~2/4 

= const �9 2hSh(r 1 -- r (11.26) 
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where 3j~ is a normalized approximate delta function of width proportional 
to 2 h. We see that in this case we can improve the 'bound (11.11) by a 
factor 2 h every time that we have to integrate the above propagator or 
expressions with the same properties. 

A simple analysis shows that this is always the case, with one single 
exception: namely when the graph is a relevant one and one considers its 
contribution to the ~, ~ running constants. This case can be explicitly 
computed and shown to give a contribution to the beta function 
+fl"v 2 + O(2h). 

The above considerations can be summarized by writing explicitly the 
beta functional in the following form, using the notation 2, ~, ~, v to mean 
the string of functions describing the running form factors on scales i 
shorter than h, (2i, c~i, ~i, Vi)i=h.h+L.0: 

Vh t = 2Vh + 2~hB~>2)(c~, ~, v, 2) 
(11.27) 

. 2 eh l = ~ h + / ?  vh+2~hB(4~>2)(c4~, v, 2) 

where B}>~P;>~q)(x; y) denotes a formal power series in x, y in which the x 
variables appear to order p or higher, and the y appear to order q or 
higher; B~>~P;E~'b?)(x; y) denotes a formal power series in which the x 
variables appear to order >~ p and the y appear only to the orders between 
a and b; B}>~P;q)(x; y) denotes again a formal power series in which the x 
variables appear to order ~>p and the y appear exactly to order q; 
similarly, B~P)(x) denotes a polynomial homogeneous of degree p in x. 
Here e > 0 can be taken any number < 1/4. 

Furthermore, if the effective couplings vh = (vh, c~h, G,  2h) satisfy 

[c%[, I[hl ~ M ,  [vhl ~<M, 12hi ~<M, h = 0 ,  - 1  .... (11.28) 

then the mth-order terms of the formal power series Bj can be so arranged 
that the mth order is described by trees with m endpoints and graphs with 
m graph elements of the form (8.1), (8.2) in such a way that the contribu- 
tion to vh ~ due to a tree of type (9.1) and a graph G is bounded by 

E o M m D C  m I[I 2-(h~-h;)~P~ (11.29) 
v~> vO 

and the relationship between vh i a n d  vh,-.., Vo is 

Vh i =Avh + E r/{0}(G, 0) f 
dn 

2~(a)h 
G, 0 m ! 

2 (G G,) ep~ 

x l-I I-[ ,~h,(f2,) (11.30) 
v >~ vo Sv  ! ie  end l ines  
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where A is the diagonal matrix (1, 1, 1, 2) and r/(G, 0) is an interpolation 
parameter in [ - 1 ,  1]; the number p~ is ~>e and f~i are the m-variables 
relative to the ith graph element of the graph G; the /~(G) is 0, e as 
described in the above discussion. 

The case d = 1 will be discussed only in the spinless model. In this case 
(11.8) no longer holds. Besides the remarkable simplification of the absence 
of the 0(2 ~h) contributions in the 2 part of the beta functional, we find that 
the beta functional takes the form 

2h_~ =-~h + B~>2)(,~)+ B(2>~';>~')( cz, (, v;2) 

vh_ 1 =2vh+B~>~l;>~2)(a, ~, v; 2) + 2hB(4~>2)(~, ~, v, ~.) 

(~h-- 1 ~-- ~h "3i- B~>2)(/~) -[- B(6 ~> 1;~>2)((~, ~, y; ,~) + 2hB(7~>2)(a ' ~, v, 2) 

(h-~ = ~h + B~>2)(2) + B~ ~> 1;~> 2)(~, (, v; 2) + 2hB(9>~2)(a, ~, v, 2) 

(11.31) 

with the notations of (11.27). The remarkable features are the absence of 
terms depending only on 2 in the relation for v and the equality of the lead- 
ing (i.e., not proportional to 2 h) terms dependent only on 2 (denoted Bs) 
in the relations for c~ and for (. 

The first remark follows from the observation that only graphs in 
which there is quasimomentum conservation at every vertex  can give con- 
tributions which cannot be bounded by O(2 h) at least. In fact, the conser- 
vation is automatic in the relevant terms with four lines, and nonconserva- 
tion in two-line subgraphs leads to a very small extra factor in the bounds 
(because if the momentum is not conserved, then it is necessarily opposite 
and the Fourier transforms of the propagators decay very fast at large 
momenta). Considering only graphs with quasimomentum conservation, 
we see that the oscillating factors due to the exponentials involving the 
quasimomenta are completely absent from the graph value. Then one can 
remark that a contribution from a graph with only 2 vertices must contain 
an odd number of inner lines: but the propagators are, up to corrections 
of O(2h), odd functions, so that their leading terms do not contribute. The 
second remark is an easy consequence of the fact that the leading term in 
the propagator has a symmetry between the space and the time variables. 

This concludes our theory of the improved bounds on the beta 
functional. 

It is important, for later applications, to remark that the use of the 
Wick ordering in the above formalism, although elegant, is by no means 
essential: and it may become a nuisance when one gets involved with the 
problem of convergence. 

It is possible, and easy, to extend the above theory to the case in 
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which the effective potential is written as the sum of a part Vp,,. of degree 
~<p in the fields, which is written in a Wick ordered form, and a part Vp ..... 
composed of ordinary monomials of degree > p. 

Taking p ~>4, the above formalism remains unchanged with a few 
minor variations: 

(a) The trees have one vertex per each frequency, which may be 
trivial, i.e., such that no bifurcation occurs: such vertices can be thought of 
as existing but not explicitly marked in the previous formalism. However, 
this time the associated truncated expectations on the vertex scale are no 
longer trivial, because the absence of the Wick ordering permits contrac- 
tions between lines emerging from the same cluster v, self-contractions, at 
least if the subgraph G~ has more than p external lines. 

(b) Due to the possibility of self-contractions, the frequency of a line 
is no longer determined by the clusters containing its extreme endpoints 
and one finds it by looking at the smallest cluster containing the line. 

(c) All internal lines are hard lines, in the sense of Section 9, with the 
possible exceptions of lines which are internal to clusters with ~< p external 
lines. 

The separation order p is taken to be ~> 4, so that the 2_w, N operations 
are still defined as in Section 7. All that is happening is that one has to deal 
with roughly the same number of graphs bearing a different set of indices 
and labels: it is a reorganization of a multiple sum. The estimates are 
clearly identical to the previous ones. The beta function is different, and as 
remarked in refs. 16 and 17, it may be much better from the point of view 
of the estimates. 

The two beta functionals manifestly agree up to an order p* and 
p* --, ~ if p ~  oc. 

A deeper remark is that we can even avoid entirely the use of Wick 
ordering, i.e., take p=O.  At first sight one might think that this really 
changes the beta function. However, a closer look shows that it only affects 
the beta function with terms of O(2 h) as h ~ - o r :  the reason is that the 
propagators g(h)(x) vanish when x = 0 up to terms of O(2h). 

We shall avoid choosing among the various beta functionals and what 
we say holds for any choice (only the actual numerical values of some 
bounds may differ). However, in the analysis of the convergence, which we 
are able to do only if d =  1 and the fermions are spinless, we use the results 
of ref. 19 and therefore we use the p = 4 beta functional. 
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12. C O N S E Q U E N C E S  OF THE B O U N D S .  THE P E R T U R B A T I O N  
T H E O R Y  BETA F U N C T I O N A L .  B O U N D S  ON THE 
S C H W I N G E R  F U N C T I O N S  NEAR THE FERMI  S U R F A C E  

The conclusion of the work of Sections 10 and 11 is thus that, if in 
Vh = (Vh, C~h, ~h, 2h), the effective couplings v h satisfy 

I~hl, I~hl ~<M, Iv,,I ~<M, I;~hl ~ M ,  h = 0 ,  - 1  .... (12.1) 

then Vh _ 1 can be expanded in a formal power series of vh, v~ + 1,--. and the 
power expansion can be arranged to have the form (11.30). 

Since the eigenvalues of A [see comment after (11.10)] are all >~ 1, the 
analysis of refs. 16-18 applies and we infer from (11.30) the following 
results: 

1. It is possible to expand Vh+ 1 in powers Of Vh: 

vh+ 1 = A  lvh+Bh+(Vh)+2hRh(Vh, VO) (12.2) 

where Bh+ (v) (upward beta function) is a formal power series: 

Bh+(v)(a) = ~ ~fdf~'tl~(~,n')Cfll~la_!vq(f~ ') (12.3) 
p ~ l a  

where a = (aa, au, an, a:) is a multiindex and 2h(~) is regarded as defined 
and bounded on the unit sphere S d- l ,  uniformly in the h. The kernel 
r/a(~, f~') is bounded also by 1 when f~ is regarded as composed of vectors 
varying on the unit sphere S d- 1. The Rh function has the same properties 
and vanishes with Vo. It is a new term compared with the results of refs. 16 
and 18: it is present because the initial interaction contains nonvanishing 
irrelevant terms expressible via the initial pair potential. The shape of the 
pair potential has to be supposed fixed here once and for all: otherwise, the 
coefficients of the power series defining Rh also depend on the shape of the 
potential in a way in which we are not interested here. 

2. A similar expansion holds for the general effective potentials on 
scale h. The effective potential on scale h admits an expansion in vh and v o 
with coefficients growing with m ! to order m and with kernels of size Co (in 
the sense of Section 9), uniformly bounded by 

DCm-lm! (12.4) 

for suitably chosen D, C. 

3. The iteration of the expansion (12.2) leads to an expansion of the 
effective couplings and potentials on all scales h'~> h. The coefficients are 
bounded as in (12.4), but now fljal is replaced by [fl(h'-h)] I_~l. This means 
that even if it were true that vh --, 0, we would only have control over the 
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large-scale behavior of the theory. The short-range behavior is hidden in 
perturbation theory (as is not surprising). 

4. The B terms appearing in the beta function have a detailed struc- 
ture identical to that in (11.25) with new B functions which depend only 
on vh. 

In Appendix C we show that the interpretation of the constancy of the 
effective couplings as h - - , - o o  can be that the potential is a delta-like 
potential in the sense of the Introduction with integral oc2 (d-1)h. It is 
unlikely that the running constants go to 0 as h ~ - o o  faster than 
logarithmically (i.e., as 1/h).  Hence, working in physical space, we expect 
to find a potential whose size is at least 2-h/h, i.e., unboundedly large! This 
shows the relevance and the interest of the quasiparticle formalism: in this 
formalism we never meet large functions and we can apply the strategy of 
using supremum bounds. In the usual representation in Fock space, or in 
the Euclidean versions of it, one would be forced to use L1 bounds, which 
are far harder to master. 

In one dimension the Fermi sphere consists of two points. All the func- 
tions of the quasimomenta become trivially defined on a space of two 
points and the bounds can be revisited and trivially improved. It turns out 
that, not surprisingly, the theory of the beta function becomes the same as 
the theory of the Gross-Neveu model. (19'23) One rigorously finds that the 
series in (12.3) converge if M [see (12.1)-1 is small enough. Hence the beta 
function exists as a holomorphic function of the running couplings with a 
positive radius of convergence. 

All the results found so far have been derived for spinless fermions, but 
the introduction of spin would just add a few more indices to our expres- 
sions; this is no longer true for the results of Sections 14 and 15. 

In the next section we study the beta functional to second order in the 
general spinless case; in Section 15 we study in detail, for d =  1, the beta 
function, introduce a new beta functional to describe anomalous Fermi sur- 
faces, and show that one-dimensional spinless systems have an anomalous 
Fermi surface. 

We conclude this section by analyzing the connection between the 
definitions of Section 5 and the bounds of Sections 10 and 11 in the case 
d =  3. We use here the notations of Sections 10 and 11. 

In studying the Schwinger functions, one can still make use of the 
notion of Co size: however, we have to consider more general graphs in 
which vertices Yl, Y2 .... with only one emerging line of type 0 § or 0 -  are 
allowed, with a form factor e +-iy~kj (the kj are arbitrary momenta); further- 
more, such vertices must be on scales hi, h2 .... between 0 and h and the 
lines corresponding to them have to be ignored in the localization proce- 
dures. 

822/59/3-4-6 
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Then one is interested in the graphs generated by such vertices, 
arbitrary trees, and no external lines. It is clear that (by the relation deter- 
mined in Section 3 between Schwinger functions and the effective potential) 
the Co size of such graphs evaluated on a given tree is a bound on the 
Fourier transform of the contribution to the Schwinger function from the 
considered graph and tree. 

We shall consider in particular the graphs with m graph elements of 
the types in (8.1) and (8.2), and two one-line vertices of type ~+,  ~ - .  This 
is the set of graphs relevant for the pair Schwinger function, i.e., relevant 
to calculate the function w'h(k) introduced in (5.33) and (7.14). 

If we now suppose that the frequency labels of the lines coming out of 
the one-line vertices are h 1, h2 )h ,  the estimates in Section i0 provide 
obvious bounds. However, the bounds that one finds are useless if perfor- 
med naively. This is in fact a major problem: its solution is deeply connec- 
ted with the underlying symmetry, pointed out several times, generated by 
the fact that the quasiparticle fields are a redundant description of the 
particle fields. 

Let fr be the set of contributions to the effective potential of degree 
two in the fields: the irrelevant ones can be divided into those contributing 
to terms like ~ + S j, D +D , D +S [see (7.8)]. Given G e f#, its contribution 
to the pair Schwinger function at external momentum k can be written as 

f f i , (k-a;,o) ')  W6(k, co',~o) ~,(k-~o,o))do)do)' (12.5) 

where ~(k, o)) is the Fourier transform of the free propagator g~>~h)(x, o)), 
which is uniformly bounded from below by 1/(Iko[ + Pv IAI), if k =  (ko, k) 
and k-=o)opv(1 +A). 

+ 1 For instance, a graph contributing to the terms ~,o, S vx,o of the 
effective potential will give a contribution to the pair Schwinger function 
of the form 

f eik(z'-Y')g(z ' --Z, --y, y - - x ,  O), o) I ) eiPF~O'(Z -- z') V G (  Z O ) ' ) ( x - - y )  2 

• g , , ( y_y ,  +t(x_y),o))eipV~ dxdydzdy '  (12.6) 

where t is an interpolation parameter, VG is a suitable kernel, and ( x - y )  2 
is a two-index tensor contracted with the tensor of the second derivatives 
g"; (12.6) can be rewritten as an integral, over the o), o)' variables and over 
the interpolation parameter t, of the expression 

f i , (k-~' ,  o)') V6(k, t (k-o)) ,  o), co') fi,"(k-~o, o)) 

- ~ ( k -  co', o~')[ PG(k, t (k-o)) ,  o), o)')o (k-c~) i  (k-co) j ]  ~ ( k -  co, o)) 

(12.7) 
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where 17 G denotes the Fourier transform of ( x - y ) 2  Vc, so that WG [see 
(12.5)] is defined by the term in square brackets. 

The sum over the full set of contributions is 

Wa(k, o~, o~') - wh(k) (12.8) 
Gcf# 

and is m, m' independent by the symmetry property pointed out in 
Sections 5 and 7. 

Therefore, we can choose, in evaluating w~,, which is our main concern 
here, e~, oJ' arbitrarily. We take them as o~=o~'=co 0 if k = ( k o ,  k ) and 
k = pv(1 + A) COo, so that IAI Pv = Iik] - Pvl. We deduce that a bound on 
the contribution ~(k)  2 w'h(k) to the Fourier transform of the Schwinger 
function from the graphs G associated with the terms ~ +S ~ in the effective 
potential can be computed, bounding (k-coo)  2 by (p21AlZ+k2) and 
Ig(k-co,  ~o)t 2 by 1/(p2v IA[2 +ko2), by 

fdtdo' I~(k + co', o ~ ' ) l  t(k-o~o), O~o, OJo)l de~ I I~G(k, 

x I~(k+ ~o, co){ (p~A2+k~) 

~<2-h ~ 1-] 2 ~h~-h~,~o 
hv~h  v~vo  

~< const �9 2-h (12.9) 

This simply follows by remarking that 2h FlT"c(--.)f is bounded by the Co 
size, in the sense of Sections 9 and 10, of the graph with two external lines 
obtained from G by regarding the two lines ending in the two one-line 
vertices as external lines. 

Of course, once we fix the gauge o~ = co'= o~ o we are not allowed to 
change it when estimating the contributions of the other graphs: but the 
same choice simply works for all the others, too. Hence the part of order 
m in the running form factors of w'h(k)/(k~ + p~A 2) can be thought of as 
generated by the appropriate graphs, receiving a contribution bounded by 
Cm2 h from each of them. 

The above conclusion can be improved using the results of Section i1, 
where it is shown that there is, in the estimate of the size of a graph with 
two external lines, a gain of a factor 2 h~, where e is a small enough ( ~< 1/4) 
positive pre-fixed number [see (11.8)]. Hence we get the bound 

2-(~-')hEo ~ ]--I 2-(bY h"') 'P"<c~ ~)h (12.10) 
hv>~h v>~vO 
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The result of this analysis is that w'h(k)/(p~A2+ k 2) can be bounded, to 
order m in the running form factors, by 

m! C m �9 const �9 2 - ( l - ' ) h  (12.11) 

for any (pre-fixed) e < 1/4. 
In other words, the contribution of the irrelevant terms in the effective 

potential to the Fourier transform of the two-point Schwinger function 
with infrared cutoff at length scale (2hp0) 1 is much smaller than 
(Ikol+l[kl-pvl)  -1 for all momenta in the range 2(1-~)hPo>lk0l+ 
I l k l -  Pv[ > 2hpo. The latter are the momentum sizes corresponding to the 
scales between 2--(1--e)hpo1 and 2-hPo 1. Hence, such contributions 
provide, in this range, singular corrections small compared to the linear 
singularity, i.e., of type 1/(ikol+l[kl_pv[)=(2hpo) 1, of the free 
propagator. 

13. THE BETA F U N C T I O N  TO S E C O N D  ORDER.  
BASIC C A L C U L A T I O N S  FOR d = l ,  3 

In this section we describe the computations necessary to write the 
beta function truncated to second order in the running form factors 2h, 
using the localization operator 5 ~ introduced in Section 7 and modified in 
Section 11. Note that we have shown in Section 11 that, if d =  3, these are 
the only contributions of O(1) to the beta function involving only the form 
factor 2, if the conditions in (12.1) are assumed. This not the case if d =  1: 
the latter case will be reexamined in Section 15. It is also easy to check that 
the computed terms are identical if one uses the definition (7.5) of 50 or the 
one adopted later [see Section 11, remark following (11.7)3. 

We shall also compute the second-order contribution to the beta 
function using the alternative localization operator 50c, also introduced 
in Section 11; we shall use it in the heuristic discussion of Section 14. 

We compute, therefore, the contributions to the 2 equation of the two 
graphs 

.................. : ............... . ~  ......... 
x "".. -.'" v 

" ' .~ . ; .~  ........ �9 . 

~ 4  ~ 2  ~ 4  ~ 3  

(13.1) 

which we call the direct graph and the exchange graph, 
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We choose x as the localization point and suppose that the two 
vertices represent 

4 

- -  j d x  1~  d {l} i ~ ( (l) l , (J~2, 0)3, 0)4) eipF(~Ol + ro2- o~3 ~34)x 

i=1 

�9 6 + q+  ,/,- ff~-,o4: (13.2) X " r x ~ l  x~2 r x~3 

and, in the case in which we study the beta function corresponding to the 
localization s176 c introduced in Section 11, we shall suppose that 2 has the 
form of a function in the range of the operator Pc [see (11.5)]: 

~(0)1, 0)2, 0)3, 0)4)= �88 [,t(0), ;0)3)-,~(0)1 ;0)4)-,~(0)2 ;0)3)+-~(0)2 ;0)4)3 

2(O)1; 0)3) ~ ~(0)1, - -0 )1 ,  0)3, - -0 )3)  (13.3) 

The latter form for 2(0)1 .... ) is not general: we see easily, however, 
that if d = l ,  the antisymmetry properties of ~[ in (1, 2) ~-~ (2, 1) and 
(3, 4) *-* (4, 3) and the symmetry in (1, 2) ~ (3, 4) imply that ~ must have 
the form (13.3) with 2(0)1, 0)3) odd in 0)1 as well as in 0)3. 

In the general case a function with the symmetry properties of ~ can 
be written in the form (13.3) plus a remainder consisting of terms vanishing 
at the points 0)2=-0)1 or 0)3 = -0)4. Following the notation of 
Section 11, we call the two terms, respectively, Pc~ and ( 1 - P c ) ' ~  [see 
(11.5)]. We call the function 2(0)1;0)3) the coupling between the two 
Cooper pairs +-0)1 and -+0)3. 

The function 2(0)1;0)3) is a complete description of the local part 
of the quasiparticle interaction if d =  1 because, as remarked above, 
(1 -Pc)~ = 0 in this case. In the heuristic discussion of Section 14, we shall 
give arguments based on the idea that if d >  1, the local part of the inter- 
action is not entirely relevant and the part (1 - P c ) ~  can in fact be put in 
the irrelevant effective potential, thereby reducing the problem to a simpler 
one described by a reduced beta function. 

The evaluations of the beta function to second order using ~ or 5~ 
are trivially related. Assume that the second-order beta function for the 5~ 
localization has been computed expressing the variation 2 ' - 2  of 
2(0)~, 0)2, 0)3, 0)4) as a sum of two terms ~(0)1, 0)2, 0)3, 0)4). Then we can 
get the beta function for the localization 5r simply by using a 
four-argument ~ function of the form (13.3) and evaluating the result at 
(0)1, 0)2, 0)3, 0)4) in the Cooper pair configuration (0)1, -0)1, 0)3, -0)3); 
hence, the variation of the running form factors associated with 5r c will be 

2'(0); 0)') = 2(0); ~ ' )  + 61(0); 0)') + ~2(0); 0)') (13.4) 

where 6~(0); 0)') denotes 6i(0), -0), 0)', -0)'). 
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If we shorten "~//+ ~//+ @ @- " t o  ;~/1234:,  the values of (]1 and (]2 " r  x((bl 7" xco 2 Xo~ 3 X ~  4 ' 
are extracted from the values of the above two graphs, which we write in 
the direct graph case as 

4 
4fdxHdo) ie@F(t~176176  1234 : 

�9 i = 1  

• f do) do)' dz I(o)1, r o), o)') i(o) ' ,  o), o)3, o)4) e 

• 22h[g(hl(2hpoZ , O)) g(h)(2hpoZ , O)') 

+ 2g(hl(2hpo z, O)) g(<h)(2hpOZ , O)')] (13.5) 

and in the exchange graph case 

4~f  I ]  dx do)i e-ipv(~176176 
�9 i=1 

• :~l1234: { f  do) do)t dz ~(o)l, o), o)3, o) ') 

• Y(O)2, o)', o)4, o)) 22hGh(2hpoZ, O), O)') e- ipr(~176 o,~ +o,3)~ (13.6) 
) A S  

where the AS label means that the expression inside the brackets has to be 
antisymmetrized in o) 1, o)2 and o) 3, o) 4 separately. No such antisymmetriza- 
tion is necessary on the first term�9 The Gh function in (13.6) turns out to 
be identical to the term in square brackets in (13.5), to leading order as 
h ~ -o% using the fact that g(h)(z, o)) is odd in z at the leading order and 
in fact can be computed from the formulas 

g(h)( ~, 69) = CO('C -- fl-- lio)~ ) 7 0 ( ~  2 )  

_~ (13.7) 
g(<h)(r o))=Co(Z_/~-xio)~) ~ 22~?o(22,~2 ) 

n =  oo 

where Co is a constant [see (A9)], ~ = (T, ~), and ff2 = 172 ~_ ~ 2 / f l 2 ,  This is not 
essential in what follows, but it greatly simplifies the calculations. The main 
problem is that, if the subleading terms are included, the Gh function 
appearing in (13.6) is not equal to the square bracket terms in (13.5), and 
this leads to minor corrections in the analysis below. 

We see from (13.7) that, if (A9) and (A10) are taken into account and 
if we set 

1 

1/4 0(10(2 

1 

+ 2 ~ 22n(] 
n= ~o 0(1 0(2/J 

(13.8) 
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then 

ah(~ ,  O, Of') = (17, -- i f l -  loi~)('C - - i f l  loire) ~)(~2) 

9 (13.9) 

and the Four ier  t ransform of Gh at zero t ime m o m e n t u m  appear ing  in 
(13.5) and (13.6) has the form, evaluated at the space m o m e n t u m  l'~ and 
for d = 3 ,  

Gh(E~, of, of') =- f d~ ein~Gh(~, oJ, of') 

4(41r)2 ~3 f ~30-(0r d~ 

X ((Of -- el')2 + ~fi2oi " ~'-~OI' " ~-)) e-~B2n; 4 ( 1 3 . t o )  

so that  we can rewrite the coefficient of the Wick m o n o m i a l  in the r in the 
direct g raph  (13.5) more  explicitly as 

2po(d+ 1) f 2- (a  1)h(~h( 2 h(pF/PO)~-~, Of, Of') 

X ~(OI1, 17.02, Of, OI t) ~(OI', Of, Of 3, 0)4) do~ doi '  (13.11) 

with f~ = o~ + el2 - co - r and in the exchange graph  case 

4; 
2 2 - ( a  1)hdo idm'P~  

x [Gh(2-h(pv/Po)(oi- -oi  ' +oi l  --el3), of, of') 

x 74oi, ,  el, of 3, el') ~(oi2, of', el4, el) 

- dh(2 -h(pv/Po)(oi - el' + oi2 -- r el, el ')  

x I (00~,  of, o i l ,  oi ) ,~(oi1, co', of 4, of) 

- Gh(2-h (pv /Po) (o i - -  e l ' +  e l  I - -  Of 4 )  , Of, Oft) 

x ~(oi1 ,  of, of 4, of') 1(oi~,  of', of 3, of) 

+ Gh(2 h(pv/Po)(oi -- Of' + OI2-- Of 4), Of, Of') 

X ~(OI2, (t), [))4' Oft) ~['(OI1, Oft, Of 3:, (,0)] (13.12) 
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The contribution to the beta functional of the above graphs is 

;~- 1(1"11"21"31"4) 
= 1h(1" 11"2 1"3 1"4) 

+ 2 f 2 - ( d - 1 ) h p o ( d + l )  d 1 " d 1 ' '  

X Gh(2--h(pv/Po)(1"l  + 1"2 -- 1" -- 1''), CO, CO') 

• Ih(1"1, 1":, 1", 1") Xh(1", 1", 1"3, 1"4) 

2 f 2 - ( a -  1)hpo(a+ 1) d1" d1" 1 

x [(~h(2-h(pv/Po)(1" -- 1 ' ' +  1"1 -- 1"3), 1", 1'') 

X ~h(1"1' 1' '  0)3' 1 ' ' )  ~h(1"2' 1"t, 1"4' 1") 

- dh(2-h(pF/po)(1" --  co' + 1"2 

x ~[h(1"2, 1", 013, (JOt) •h(1"1, 1'', 

- d:h(2 - h ( p F / p o ) ( 1 "  --  1' '  + 0.) 1 

• ~h(1"1,1", 1"4,1") ~(1"~, 1", 

+ d;h(2 h ( p v / P o ) ( 1 "  - -  1' '  + 1"2 

--1"3)' 1'' COt) 

1"4~ 1") 

-- 1"4)' 1' '  1"t) 

OI3, 1") 

-- 1"4)' 1 ' '  1 ' ' )  

M ~h((.02, 11), 1:04, 0~') ~h([l)l,  I~', (03, 0]1)'] (13.13) 

To evaluate the contribution (13.4) to the variations 81, 52 of the run- 
ning form factors 2(1"; 1") associated with the L,~ localization, as remarked 
above, we simply must evaluate (13.11) and (13.12) at the Cooper  pairs,  i.e., 
fo r  II) 2 = - 1 " 1 ,  o~4 • --1"'03" The results are 

_ ~ d 1 " d 1 " , p o ( d + l ) 2  (d 1)h (~ 1((.01, 0) 3)~--- 

x dh(2-h(pz/p0)(1" + 1''),  1", 1' ')  

X [-~(1"1, 1") ~"(1", (113) -- ~(1"1, 1") '~(1"3, 1 ' ' ) ' ]  

- 4  f d1" d1" po(d+l)2 (a 1)h 6~ 2 (1" 1 , 1"3) 

x [dh(2-h(pv/p0)(1" -- 1'' + 1"1 -- 1"3), 1", 1'') 

X ~(1"1' 1' '  1"03' 1' ' )  ~ ( - -1 "1 '  1"" --1"3 '  1") 

-- Gh( 2 h (P F / P o) (1" - -1 ' ' - - 1 "1 - - 1"3 ) , 1 " , 1 ' ' )  

X :~(--1"1, 1", 1"3, 1'') :;~(1"1, 1'', --1"3, 1")] (13.14) 
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where the symmetry properties of (13.3) and (13.10) have been used to 
simplify the expressions. 

At this point we must distinguish the d =  3 case from the d = 1 case. In 
the rest of this section we continue with d =  3. The d = 1 case can be treated 
in a much more satisfactory way and is deferred to Section 15. 

Not  surprisingly, it is useful to represent, if d =  3, the functions in 
(13.14) and (13.10) via the spherical harmonics in the polar coordinates 0, 
(p, of 0), which we denote with the usual notation, namely Yl, m(0))= 
PI,[mI(COS O) eim~~ lml, where 

d ]m ] 
Pl.lml(x) = ( -  1) Iml (1 - x2) j''l/2 dxl,.l & ( x )  

PI, I~I(x) = (-- 1)/+ I , ~ l  P1,1ml(--x) 
d l 

P , ( x )  = dx / (1 - x 2 /  

(n -  Im[)! (13.15) 
C 2 - (2 l+ 1) 

/ , I m l  - -  ( n +  Im])! 
1 

a(0)- 0)')= Z Z r,,m(0)) 
l = 0  m = - - I  

l 

( 2 l + 1 ) P z ( 0 ) ' 0 ) ' ) =  ~ Y/,m(0)) Yl.,,(0)') 
m =  l 

where (0, q}) are the latitude and azimuth coordinates of 0) in an arbitrarily 
prefixed frame of reference on the Fermi sphere. 

Thus, we define g(l, h) by the expansion 

po(d+*)2-(a-1)hGh(2 h(pv/Po)(0) + 0)'), 0), 0)') 
y , = ~ g(l, h) Y/,m(0)) ,,m(0) ) (13.16) 

l, m 

where we used the fact that the lhs is a function of 0)-0)'. Moreover, 
g(l, h)-+h+ oo b ( - 1 )  t with b >0 ,  because 2-(d-~)hG h is an approximate 
delta function with width 2 h in the variable 0)+ {o'. The positivity of b 
comes out of an explicit calculation; see below. 

We can also write 

2(0)1, 0)3) = ~ 2/Y,,m(0),) Y/,m(0)3) 
l = odd, m 

= ~ (21+ l))olPl(0) 1.0)3) 
t o d d  (13.17) 

( 5 i ( 0 ) 1 '  0 ) 3 ) =  Z (~i, IY l ,  m(O.)l) Y . l , m ( 0 ) 3 )  
1 = odd, rn 

=- 2 (21+1)(5i,1Pl(0)1"0)3) 
1 odd 
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where only the odd / ' s  enter into 2, 6, since they are separately odd in el~, 
el3 and, furthermore, they are symmetric and rotation invariant in ~1, ~3 
(the latter property also is needed to explain the 1 dependence of the 
coefficients). 

Then, for all odd l, the g(l, h) are eventually negative for all negative 
h large enough in modulus and simultaneously for all l 

6~t=  - E g ( O ,  h)-g(l, h ) ]  2 2 ~< 0 (13.18) 

In fact, g(O, h)~> Ig(/, h)l, since IPtl ~ 1 and 

4(4n)2/~3 f @30.(0~) d@ f 2-'a-1)hE(el _ el,)2/4 g(l, h) 

+ 2 2h(pv/Po)2C~fi2(1 +el .e l , )2]  

X {exp[ -- (m + (I)') 2 e/~22-2h(pV/po) 2] } PI(~" ~')  po  (a+ 2) do~' 

(13.19) 

Furthermore, if 1 is odd, one realizes, by changing o~' into - ~ '  that g(l, h) 
is ~<0 up to a correction of 0(2 h) coming from the second term in the 
integral in (13.19). The limit as h ~ -oo  of the coefficient in the rhs of 
(13.18) is -2b ,  where b > 0  is the limit of g(0, h). One can easily estimate 
an/-independent value of h such that for all smaller values Ig(l, h)l >b/2. 

The theory of 62 is more elaborate. We begin by remarking that [see 
(13.14)] 

62(0)1 ,  ('03) = ~2(0"~ 1 - -  ('03) - -  ~ 2 ( e l l  + (I)3) (13.20) 

where, if ~ = el - el' + el~ 
tion d is 

- e l 3  and N =  ~ f12 h(pv/Po), and if the func- 

6(e) = 42(4n) 2 fl3c~3 a( a )/[ ( x f~ fi(PF/Po ) d-1 t~ o-a + 1~3 

we have 

32(ell - el3) = - 
(, 

4(c~) dc~ J del del' 

x ~(el~, el, el3, el') ~( - -e l l ,  el', --el3, el) (13.21) 

and we realize that 02, l ~-- 2~2, z for all odd 1. 
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Therefore we study the distribution 

[ .hi e 4 

where F is a test function, N ~ co, and d =  3. 
In Appendix B we analyze (13.22), choosing 

1 
f (ml  m3 reel') = ~7 [2(ml, m3) - 2(m,, m') - 2(m, m3) + 2(m, ~ ' ) ]  

x [)~(ml, m3) + 2(~ m) + 2(m', m3) + 2(m', m)] (13.23) 

We show that the leading term as N--* co is given by 

1 dy <F>I(NA)=<F>-8fb,<aNAN[~+(Y2--~)mI'm3]e Y2 (13.24) 

where, if R~ denotes the rotation by q0 around the axis parallel to A, 

dcp C </O - ]  ~ g ( ~ l ,  ~3, R~3,-R~I) 

7 do 1 

x [22(ml, Ikl3)--1- 2(~1, R~ocJ%) + X(Ii13, Roml) ] (13.25) 

It also follows that 61 and 62 satisfy the bounds 

lad ~< C(max 22) (13.26) 

[621<~C(max)o2)IJo(NA)+l ] (13.27) 

where 
x 2 1 dy y2e y2 <~ C (13.28) 

J ~  : x 1 Jr- x 3 

The above bounds are not sufficient for the theory of the flow 
generated by the full beta function, nor that of the reduced one in (13.4). 
One can find some better bounds by making more use of the form of 62; 
however, we cannot really solve the problem even in the case that all the 
higher orders are neglected. We give a heuristic discussion on this point in 
Section 14. 

In Section 15 we analyze the d =  1 case, which is very easy if treated 
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with the above techniques, because the Fermi surface contains only two 
points and therefore there are no longer infinitely many marginal directions 
in the renormalization group flow. 

14. A N A L Y S I S  OF THE R E C U R S I O N  RELATION.  
HEURIST IC  C O N S I D E R A T I O N S  ON THE CASE d = 3  

As repeatedly stressed [-see observation after (7.10)], the recursion 
(11.30) for e, if, v involves scalars rather functions on the Fermi surface. A 
first interesting application of this remark is that the condition of bounded- 
ness of the running couplings can be combined with the immediate conse- 
quence of (11.30): 

0 

V h - l = A  h+lVo+ ~ A ~ hBk(v k ..... V0) 
k = h  

E o ] = A  -h Avo+ ~ AkBk(vk,...,v0) (14.1) 
k = h  

If we look at the v component of Vh 1, we see that (14.1) becomes 

vh ~ = 2 - h  2v0+ "- ~'k ~-k,...,Vo 
k = h  

0 

2Vo + ~ 2kB(kV)(Vk,..., V0) = 0 
c o  

(14.2) 

where the first relation implies the second if one imposes the boundedness 
of the form factors: 

ivhl ~< M (14.3) 

Similarly imposing e _ ~  = ~ _ ~  we get a scalar equation. Hence, the just 
mentioned equations are two scalar equations formally fixing the values of 
Vo, ~o. If the (r o ' )  independence of vh, eh, ~h had not been taken into 
account, it would have appeared that c%, v o should have been determined 
by imposing that v ~(r r  and ~_~(~ ,  o ' ) = e  ~(r ~ ' )  and the 
problem would have looked overdetermined. 

Before studying the consequences of the form of the initial interaction 
on the o dependence of the more complicated form factors 2h, we recall the 
outcome of the analysis of Sections 11 and 12. Setting )oh = )o and 2h 1 = /~' 
and using a similar notation for the running constants, (11.27) can be 
written 
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2' = Z + n(>2)~ 9~hn(>--~ u(e, ~, v; 2) uh. l ~ , , ~ , v ; 2 ) + .  -h.z 

v' 2v ~h (>-2) 2) = + 2  Bh~ (c~,~,v, 
(14.4) 

O~'-~--O~-}"flt'V 2 J-  vet '~l(>~2)(ev 2) ~ ~ h , 4  ~ ~, V, 

,, 2 ~h (>-2~ 2) . U = ~ - f l  v + 2  B,, 3 (e,r  

where we use a notation similar to (11.27), but this time the B functions 
depend only on the variables on a single scale; they are formal power series 
with coefficients obeying factorial bounds like (12.4). Thus, we see that all 
the nonlinear terms referring to ~, if, v have in front of them an extra 2 ~h 
with the exception of f l"v2; hence, they are, order by order, small if the 
running constants are uniformly bounded. 

This can be used to infer that one expects that, fixing conveniently the 
two free parameters a 0, v o, the flow generated by (14.4) has a solution 
satisfying the two conditions that 7 e -~ 'h-+ 0, vh--' 0; and the convergence 
t o 0 a s h ~ - o o  ofvh,  c~h--~ ~ , ~ h - - f f _ ~  can be at a rate of O(2h): 

tvhl ~ < const "2~h, I~h-~-~1 ~< const .2 'h, lffh-~-o~l ~ const "2~h 

(14.5) 

Of course, one would like to check the consistency of the assumption 
(14.3) at least when the beta function recursion is truncated to second 
order: this is difficult because the recursion relation for 2 h is still too com- 
plicated. 

The idea to simplify it is to go back to Section 11, where we men- 
tioned the possibility to use a more complicated s operation, named 5('c, 
keeping the linearity of the operator 54'c, thus never breaking the gauge 
invariance. Then use the fact that the original dependence of the interaction 
on the fields Ox implies, together with the gauge invariance, that the func- 
tion 2(m~, 0)2, 0~3, ~4) has to be rather special, just as remarked for the 
~(o~, co'), ~(~, ~'), ~(co, 0,9. 

A simple calculation shows that the functions 2 h must have the form 

2h(O'}l, 17"02' 0)3 '  ('04) = Aa(o~, 0~3, r - A~(~%, ~3, 0"14) (14.6) 

where the functions A h are rotation invariant and have the symmetry 

A(o l ,  ~2, ~ 3 ) =  -A(0)I ,  ~3, m2) (14.7) 

Hence we can think that the (14.4) is a recursion relation expressing 
the three scalars c~h, ~h, vh and the functions Ah(0)l, ~2, 0)3) in terms of the 
same quantities with higher scale indices. Unfortunately, there seems to be 
no projection operator which projects a function Z(o~, 0)2, oJ3, ~4) onto 
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the functions of the form (14.6), defined by means of purely algebraic 
operations. Hence we cannot make efficient use of the above simplification. 

The guide to our attempt to understand the flow of (14.4) has been the 
conjecture that the 2h, even in the form (14.6), still contain irrelevant terms 
which have to be taken out. This is the interpretation of the choice of the 
new localization operator Lfc. 

The operator Pc introduced in Section 11 [see (11.5) (11.7)] acts 
algebraically on ):h and therefore one can envisage performing the estimates 
of Section 10 anew with the localization operator Lf replaced by a new 
localization operator which acts as before on the monomials of degree two. 
On the monomials of degree four it acts first as in Sections 7 and 10 and 
successively it changes the localized terms by altering their form factor 
from 2h to Pc2h. 

Then we easily check that all the contributions to the new B functional 
in the formula analogous to (9.1) from graphs with more than two 2 ver- 
tices and at least one loop with three (or more) lines are bounded as 
demanded by (14.3) and the problem can probably be reduced to the 
graphs of first and second order in 2 (such graphs are the only ones for 
which one cannot be helped by the extra powers of 2 ~h discussed in 
Section 11). The exchange graph also gives no problem in the estimates, 
as shown by the bound of 32 in (13.27); in fact, Zh J0(2-hA) ~< const. But 
the direct graph definitely gives a contribution contradicting (14.3) if 
)~h(~ol, o~3) is just supposed to satisfy (14.3), since the bound (13.26) on 31 
cannot be improved. 

The situation changes if, in addition to (14.3), one supposes that 
)~h(~ol, co3) for h --* -oo  is of the form 

2h(tOl; to3) = fh(12 h(~ol - co3)l) -- fh(12-h(COx + ~3)1) (14.8) 

where fh(x) is a family of functions tending to 0 as x-o  oe. Then the 
integrals in (13.21) and (13.14) can be estimated asymptotically and one 
gets an explicit form for the leading term of (13.4). Nevertheless, we have 
not been able to study the recursion equation, not even to second order 
[-i.e., (13.4)], under the hypothesis (14.8). 

On a heuristic basis we present a remark which we think is of interest 
(stressing that from now on the discussion is purely heuristic). The fact that 
the graphs with more than two four-line vertices do not give problems in 
deriving bounds like (14.3) should mean that they could actually be com- 
pletely forgotten in the subtraction procedures. Hence the really important 
part in the description of the flow of the form factors should be determined 
by the two basic second-order graphs. One can thus be led to consider 
seriously the recursion to second order described by the two second-order 
graphs built with two vertices with four lines. 
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Consequently we shall try to study the reduced flow generated by the 
P c  operation [described by (13.14)]. We look for a solution of the flow 
which asymptotically approaches as h ~ - ~  a function 2h((0~, (03) of the 
form (14.8). 

We first want to discard the possibility that 2 h takes the form (14.8) 
with fh ~ f ,  where f is a regular function not identically zero. It is easy to 
check, using the estimates on the second-order graphs in Section 13, that 
the contribution of the direct graph to the flow tends to vanish as h -~ -oo,  
while the exchange graph gives a contribution which keeps f fixed 
(asymptotically in h), provided f satisfies the fixed-point equation 

f ( x )  = f ( x / 2 )  - I(x/2)  f ( x / 2 )  2, f (or  ) = 0 

Z(x)=Cfd= e~xB(pF/po),fi ~.o y:e Y:dy (14.9) 

c=(2~)  :p~ ~ - ~  

where a(cr and Co have been defined in (13.7) and (13.8); the relations 
(13.21), (13.24), and (13.25) have also been used. 

The relations in (14.9) can be rewritten in dimensionless form by 
introducing 

c~2a(cr dc~ 1 [,x./~ 

f (x )  = gC-  if(B(p~/po)X) (14.10) 

g -  cf(o) 

We thus find that the relations in (t4.9) become 

f ( x )  = f ( x / 2 )  - g i ( x / 2 )  f ( x / 2 )  2 

f(O) = 1 
(14.11) 

with the further condition f ( o o ) =  0. It is interesting to remark that the 
above equation for f admits a family of entire solutions. If one imposes the 
condition f ( o o ) =  0, one finds that the only regular solution is f =  0. 

Hence we see that the exchange graph contribution to the beta func- 
tion seem unable to keep 2h away from zero and at the same time a 
(regular) function of 2-h((01-  0)3). On the other hand, one expects that if 
2 h does not go to zero, it has to become a function of 2-h((01 --(03); see 
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below. It is therefore very natural to think that the flow will asymptotically 
go to a limit regime in which 

2h(r h ~ - ~ ' O  
(14.12) 

vh-~0, ~h--'~-oo, (h~(  

and the Fermi surface would exist and he normal. 
The mechanism whereby )oh(r o~3) cannot stay smooth in t~l, to 3 for 

too many values of h could he that the exchange graph would be very 
small, as long as t~l, t~ 3 are fixed (asymptotically it vanishes exponentially, 
as seen in Section 13) and the flow is determined by the direct graph. The 
latter, however, acts trivially on the spherical harmonic expansion of ~h: see 
(13.18). And if the interaction is repulsive, we see that the Rt(h)  component 
of 2h evolves, at fixed l and large h, essentially as 

2,(h - 1) = 2z(h)  - f l2 , (h )  2 

i.e., 

;~(0) 
2,(h) ~ (14.13) 

1 - ~ ; ~ , ( O ) h  

where f l>O is g(O, - o e )  with the notations of (13.18), and [-by (5.22), 
(5.23)] &(0) >/0. 

Hence the low-angular-momentum components are depressed as h 
grows, provided one understands why they stay nonnegative, and their 
relative importance diminishes and 2h looks more and more irregular as 
a function of ml, m3, so that the (14.12) seems at least an interesting 
possibility. 

From the above argument we also see that the sign of the potential is 
relevant and the whole mechanism can only work if the interaction is 
repulsive. 

We refrain from elaborating on the theme, as the discussion would be 
based on a too strongly conjectural basis. 

However, we formulate in a precise fashion our basic conjecture: the 
map (13.4) acting on functions 2h(col, co3) with a Legendre expansion, like 
the first of (13.17), with nonnegative coefficients, is such that the iterates of 
the map behave as (14.8) with 2h satisfying (14.12). 

15. O N E - D I M E N S I O N A L  M O D E L S .  A N O M A L O U S  S C A L I N G  

In the d =  1 case the calculations are simple: the (13.14) still hold, but 
this time the integrals are in fact sums over two possibilities and they can 
be immediately computed. 
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In this section we write x =  (t, x), k =  (k0, k) and the quasiparticle 
momenta will be denoted co = +1 or, when we want to stress that co can 
be thought of as the space component of the vector (0, 0), we shall also use 
the notation ~. 

The factors 2 -2h become in the d-dimensional cases 2(d-1)h; hence, 
they are absent if d =  1. Furthermore, the symmetry properties of 2 imply 
that in the expression for 6~ we must have c o = - c o ' ,  while in 62 the 
antisymmetry forces co = -cox, co'= -0)3, col = --(2)3 in the first term and 
co=cot, c o ' = - c o 3 ,  c01=c03 in the second; the integrals over co's are 
averages, i.e., ~ de) = 2 -1 F~o= +1, and we see that if 

flo = Gh(0, co, --co) = 4(4rt) 2 f13 f 0~30.((~) d~ 

it is 

6~ = -r io ~2 + O(22h), 62 = Bo,~ 2 + 0(22h) (15.1) 

where we set, in this section, 2 = 2(co, co), 6i = 6i(co, co)--a convenient nota- 
tion, as there is only one coupling constant 2 in terms of which the 
2(co~, co3) can be expressed. It is in fact 

2(COl, (D3) ~- (2) 1(/)32 (15.2) 

A complete calculation, including the nonleading corrections, is also easy 
and the result is 

6 ,+62=[ f l 122h+O(22h ) ]2  z, f i , < 0  (15.3) 

The above cancellation of the leading terms in (15.1) is, however, acciden- 
tal: to remove it, one should investigate the higher-order terms in the beta 
function. The calculations of third order, although straightforward, are 
quite delicate and with many cancellations: we only give the results. We 
find that the beta functional is, to third order in 2, 

~h 1 = ~ h (  1 -1-~3 ~2-~- "" ")"~- 22h(~1;~2 -~ " ' ' )  (15.4) 

where 0 < ]~3 < 00. 
The third- and higher-order terms also contain the other running 

couplings, but (15.4) is already sufficient to infer that the theory is not 
asymptotically free. This is unfortunate, as in the one-dimensional case it is 
clear that the model is a kind of Gross-Neveu model and one should be 
able to apply the work of ref. 19 to deduce that if 12hl, f~hl, Ivhl, I.~hl < M  
and M is small enough, then the formal power series describing the beta 

822/59/3-4-7 
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functional is convergent and one could have hoped to study it completely 
via the technique of refs. 19 and 24. 

Unfortunately, ref. 19 treats the running couplings flow and obtains 
analyticity properties without explicitly referring to our beta functional 
(introduced in refs. 16-18) and we have not really gone through ref. 19 to 
check that their results imply the analyticity of our beta functions. Hence, 
strictly speaking, we do not have yet a formal proof of the analyticity of the 
beta function. We shall come back to this technical problem in a later 
publication. 

One can hope to use the convergence of the beta functional to look for 
a different type of asymptotic behavior of the running form factors. 

In situations of lack of asymptotic freedom it is by now well known 
that one ought to look for anomalous scaling behavior: this could manifest 
itself as an anomalous dimension when the relevant Schwinger functions 
decay at infinity with a power Ixl 2~ faster than the corresponding free case; 
or they decay at infinity faster by c(log Ixl) c'. In the first case one says 
that the system has an anomalous dimension tl (and t/ can have any sign); 
in the second case q = 0 and the anomaly is just in the c, c' logarithmic 
corrections. 

Our formalism, so far, has not been developed so that it could allow 
for anomalous scalings. It is, however, straightforward to do so, and we 
only describe the variations of the technical details to adapt the work of 
Sections 6-10 to the anomalous cases. 

We follow a procedure learnt from G. Felder in scalar field theories. 
The fact that co= ___1 is heavily used, however; hence, what follows is 
typically one dimensional. 

Conceptually one introduces a sequence Z0, Z_ I , . .  of constants. The 
constants have to be dynamically determined: it emerges from the coming 
analysis that the possibility of anomalous scaling can work only if the 
already analyzed method to exhibit normal scaling fails, and vice versa. 

One thinks of defining a sequence of fields ~(,<h) which are defined in 
terms of the Z h and of the fields O(,<h) with propagators defined by (4.5) 
a s  

(A<-h)=Z 1/2C<'h~, Z = Z h  (15.5) 

and we shall denote the integration over ~/_<h) by Pz(d~ (<~h)) for Z > 0. 
The recursive definition of the sequence Zh proceeds as follows. One 

starts from Zo = 1 and considers the relevant functional integral: 

f Pzo(d~ ~~ exp - V~~ ~<-~ (15.6) 
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As already done in Section 14, we can use the remarkable symmetry 
of V (h) implying that V (hI depends only on the particle fields: 

t~(<.h)+_ = f e+_~pvo, x~a(<.h)+ do x, t "r x, t, o~ (15.7) 

and we can think of Pzh(d(J (<~h~) as a distribution on the fields ~(~h) or as 
a distribution on the quasiparticle fields (as we please!), as long as we 
integrate functions of the fields depending on ~/?(~h~ via the particle fields "r x,t, to 
(15.7). 

We use (15.5) and, hence, the possibility of representing ~(~h) as 

Z h l / 2 1 / l ( h ) _ . ~ . _  ( Z h / Z h  1 ) - 1 / 2  ~(~<h--1)  ( 1 5 . 8 )  

where qy_<h~, ~/(h) are either particle or quasiparticle fields. Integrating 
(15.6) over t//(~ we reduce the integration over ~(_<o) to an integral over 
i~(~< -1). 

f Pz ,(d~ (<" -1~)exp - V(-1)(Z1/2~(<~ - 1 ) )  (15.9) 

where the ~(--1) is not the same as the effective potential introduced in 
Section 4. If Z ~ is known, then p(-1) has to be determined so that the 
(15.9) holds. We shall see that this is possible in many ways (e.g., Z_  1 = 1 
has already been discussed): we choose here to determine Z 1 by imposing 
that V (-1) does not contain one of the relevant terms; precisely we impose 
that s  has a vanishing coefficient. 

Introduce the kernel operators Ch with Fourier transform 

Ch(k)=exp{+[kZ+(k2-k2)2]2 2hp02/4 } (15.10) 

operating on the particle fields ~x or 

Ch(k,o)=exp{+[k~+(flok+k2/2m)2]2-Zhpo2/4 } (15.11) 

operating on the quasiparticle fields ~x,o~. We shall see that the above 
definition of Z 1 is possible only if one allows new fields to appear; the 
new fields are 

r x ,  o~ 

or [O,+(--t?2--pZ)/2m](1--Ch)~(~ <-h) (15.12) 

The actual construction is explained in detail below. 
Equations (15.10), (15.11) look horribly diverging at 0% so that one 

needs to be very careful in studying the action of Ch: one can apply it only 
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to fields which have an ultraviolet cutoff strong enough to compensate for 
the divergence of Q(k)  (as, however, will always be the case). 

The new fields (3,+i/3~o . 9 , , ) ( 1 -  Ch)~}(~<h) will be added to the list r x ,  co 
(7.1) and the recursive construction of the fields q)(~h) and of the Zh 
proceeds in the same way as in the normal case. 

At the end of the first step we have built Z_ I  and we can proceed to 
the construction of the 9(-2). The calculations can be performed pertur- 
batively by using the cumulant expansion. 

Before proceeding, we give an interpretation of the new integration 
procedure. 

We can think of denoting by Pzh(d(;(<~h)), Pzh(d(J (h)) the integrations 
with respective propagators 

h 
Z h  1 ~ 2kgk,  Zh12hg h (15 .13)  

k= -co 

To simplify the notation, we do not include in the quasiparticle 
propagators the 6 ( ~ - ~ ' )  functions (which in this case are Kronecker 
deltas) [see (4.5)], which in some sense are part of them: but of course in 
computing the graphs we always impose equality of the os of two half 
lines composing an inner line. 

We then define the sequence Zh, p(h) so that the integral (15.6) is 
given by 

f Pzh(d~ (h-l)) f Pz~(d~ (h)) exp [ g(h~(z~/Z~(~h))] (15.14) 

for all h and with ~(h~ not containing the terms ~ 0 +  ~ , 0 - .  
If the effective potentials are defined and the form factors are bounded, 

we can interpret this as saying that the Schwinger functions with infrared 
cutoff at po 2h behave as in the free case with a Z h correction: 

S(>_.h)(2 h(x - - y ) ,  (D) ~' r , f  . . . . .  hz o(~>h)tz tx--y),  co)/Zh 

as h ~ - o o ,  ( x - y ) = f i x e d  (15.15) 

where - means that the logarithms of both sides, divided by h, have the 
same limit. 

In other words, assuming that, to leading order as h ~ o% one has 
Zh = 2-2nh; we see that this means that the system has an anomalous dimen- 
sion tl and if, to leading order, Zh = c( -h)  C', then we see that the system 
has an anomalous c, c' logarithmic scaling. 

We do not go through the heuristic argument necessary to establish 
the (15.15) on the asymptotic properties of the Schwinger functions: this is 
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well known (see ref. 28, Chapter 9). We just mention that, in the presence 
of an infrared cutoff at frequency h and on scale p o ' 2  h, (3.9) is modified 
to 

1 i f  ---G-5 g(>~h)(x-z) S(>~h)(x--Y)=~h g(>~h)(x--Y) Zh 

• V(h)~'--z')~fr t~ g(>~h)(z'--y) dz dz' (15.16) 

Suppose that one could show that 

V(h)(z. o~, ' 0 ' )  = Zh2hVh6(Z Z') + Zh6h(5(Z-- Z')(iflo'~,,,) e f t  t , Z , 

+ ZhW'h(Z--Z' ) (15.17) 

where 0;, ~,o, are differential operators acting to their right on the z' 
variables. Then it would follow that, if [kl ~p02h 

S(~>~)(k) = ~(Z),)k)__t [1 - 2hVh -- (k 2 -- p f )  6h ~a(~>h)(k) -- w'h(k) f(>~h)(k)] 
f /  

(15.18) 

Hence we can use the obvious modification of Definitions 1 and 2 of 
Section 5 to define the anomalous Fermi surface (with the same remarks, 
limitations, and comments). 

The theory of the flow of ~(h) can be done by using the tree expansion. 
We begin by writing the functional integral (15.6) as a formal integral over 
the Grassmanian fields ~ +, ~ -  of the expression 

e x p [ -  To(Z~/2t~)- g(~ ] (15.19) 

where Z0 = 1, P(~176 and taking Co from (15.10), To is 
defined by 

- ~ f ~x+o,(O, + iflo~,o) Co~2~o dx (15.20) T0(~) 
~o 

with ~ denoting the covariant space derivative. 
Since e x p [ - T o ( Z ~ / 2 ~ ) d ~ ]  is the integration with respect to a field 

with propagator with Fourier transform 

Z o  lg( ~O)(k ) = Z o  1Co l(k)( _ iko + 3k~o + k2/2m) - 

- Z o l g  (~ + Z o l g  (<m (15.21) 

we can write the integration over ~ by representing ~ as (~(o~ + ~)Zo~/2 
with ~(o~ having propagator g(~ and ~ having propagator g(<~ see 
Section 4. 
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The integration over 0 (0) leads, via the tree expansion, to 

e x p [ -  V 1(Zlo/20) - V (- 1)(Z01/21//)] 

where V (-1) is defined exactly as in Sections 6, 7, and 9. 
Hence the relevant part ~V(-1)(Z~/2O) should look like 

(15.22) 

P v 
[ 1 ~  + ' + o ' ~  - + - " ' dx Zo( nO x, ,o tp x, ,o, + tat) . . . .  ' O x, =, + zO x, o O , O x, ,o, ) e'PF('~ --'0 )x 
J t_ --co, og " 

2 + + 7 
'[- Zo l l / l  x, l @ x , - l ~ l x ,  l~lx,  l J  (15.23) 

We see that (in general z r  and) the relevant term involves a nonzero 
coefficient z for ~t. Therefore, according to the prescription to define Z_  1, 
(15.23) will be rewritten 

f dx Zoz  ~ + Ox, co(~t.~_ i(o~o~) l ~.~_lt~,x,Co eipV('o-'o') x 
o), o~' 

+ f dx ( ~, [ Z o n O + ~ , , o y + i Z o ( a - Z )  Ox+,,oflo'~,o,~k~,e '(~ ,,')pr,,] 
O9, co ' 

"q'- o lOx ,  ooOx_r.oO~,,o~O~,, "}- d x  E e i (~176  
oJ,r 

x Z0z0+o~(a, +/flo '~,o,)(1 - C_ , )  0;~o,] (15.24) 

The exponential of the sum of (15.24) plus the irrelevant terms has to be 
integrated with respect to the distribution P z o ( d ~ - l ) ) .  We can again 
make use of the structure of the effective potentials, as in Section 14, to 
claim that the integral must be a function of the quasiparticle fields which 
is expressible in terms of the physical fields. If we imagine for a moment 
that the effective potentials are expressed in either way, then we see that the 
free distribution Pzo in the integration of the exponential of (15.24) plus the 
sum of the irrelevant terms can be regarded as an integration with respect 
to particle fields or to quasiparticle fields: the value of the integral of the 
exponential of (15.24) is the same. (This apparently paradoxical property 
is most clearly understood in the case of Gaussian integrations, where it 
can be checked explicitly: it is an algebraic consequence of the Wick 
integration rule and it holds also in our case where the integrals are only 
defined via series expansions and the Wick rule: it is in some sense 
analogous to the Ward identities in quantum electrodynamics.) 
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The latter remark shows that if we temporarily return to the integral 
of the exponential of (15.24), plus the irrelevant terms, interpreting the 
pzo(d(~(~ ~1) as an integral over the particle fields, we can think of the first 
term of (15.24) as being expressed in terms of the particle fields as 

f dx Zozt~ + [8, + ( - ~2 _ p2v)/2m] C_t ~2 (15.25) 

where Ch is defined in (15.10). Hence, we can put it together with the 
similar term in the free integral Pzo(d~(~-~)), changing it to 
Pz_~(d~, (< -~)), where Z_I  is defined by Z_~ = Z0(1 +z).  

Finally, we can again apply the above remark to think of the integra- 
tion with respect to Pz_~(d~ (<-~)) as over the quasiparticle fields rather 
than the particle fields. If we define the operator V~-~)(Z ~/] q~) to be equal 
to the term in square brackets in (15.24) and the operator V(R-1)(Z1/]~) as 
the difference between V(-~)(Z~/2~) and the sum of the first and second 
terms of (15.24), we see that V(-1)(ZU]~) can be written as a sum of the 
form 

x f dx { [ Z  t_ ~ (i6 - O+~c~ : ~  , + 2 - ~ v ,  , ~" ,,o)~- x,~,J .,.+ .,.- ,.z(~,~ ,o'),F, 
(o, o9 ' 

+ +  ]1 " ~ - Z _ l Z _ l ~ l x ,  l l / / x ,  t @~,1 ~r 1 ( 1 5 . 2 6 )  

with Z 1 defined after (15.25), and Z _ 1 6 _ l ~ Z o ( a - - z  ). Furthermore, 
(15.22) becomes 

e x p F - T  , ( Z ~ ] ~ ) - V ( - 1 ) ( Z ~ ] ~ ) ]  (15.27) 

At this point we iterate the procedure and define g(h)(Z1/2~l) of the 
form 

~;'(h)l z l / 2 d l  ~ = f f ( h ) [  7 1 / 2 d t  ~ -I- ~ ( h ) (  7 1 / 2 ~ h  ~ 
- - L  ~,~h "g ) ~ - - R  \ ~ h  "11I 

?~a'(Z~,/20)=f dx {IZh ~ (iGOx+,o~,oOx-,o, (15.28) 
r {t} ' 

+ 2 vh~px, o, tp2,~,) e~('~-~)PVxq-zh)~hOx,]Ox,_lOx, tOx,_ t 
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and the above analysis also implies that V(R h) is expressed by a tree expan- 
sion exactly identical to the one associated with the localization operator 
L~ in the normal cases of the preceding sections with the (minor) change 
that some new two-line vertices may be present in the graphs, correspond- 
ing to the new fields 

(0t + i/?co~,o)(1 - Ch,) ~Ox, o, (15.29) 

with h' ~> h. The operation &a is extended to the two- and four-external-line 
graphs containing lines of the form (15.29) simply by using (7.7) and com- 
puting the result: it turns out that the result of the action of ~ on such 
operators is simply zero. 

The beta functional defines a map of the form (9.1) which is construc- 
ted by the same rules with more graphs, to take into account the new 
possibilities that arise because of the new terms with the fields (15.29), and 
with a suitable factor (Zh/Zh 1) n multiplying each equation (with n = 2 for 
the equation associated with 2h_ 1 and n = 1 in the cases corresponding to 
~h-1, vh-1). 

Furthermore, one finds, of course, no recurrence relation for the 
ffh running constant, which by construction is no longer present. The c~h 
running coupling, too, is no longer present in some sense: it is replaced 
by a conceptually new constant which we denote with a different name, 
6h; finally, there is a new equation which replaces the one for the ~h and 
determines the value of Zh/Zh_~ in terms of the previous values of the 
running couplings. 

The lines coming from the fields (~t + ipvo~,,)(1- Ch,)0- originat- 
ing in the vertices of the above type do not cause problems in the analysis 
of the new beta function, as they necessarily occur as internal lines and the 
bigness of Ch, is compensated by the ultraviolet cutoff in the propagators. 
It is in fact easy to see that these internal lines just behave as lines of 
scale h' and, upon summation over h', as irrelevant terms [-the reason is 
that 1 - C h , ( k )  is big for k > 2  h', but the fields on which it operates 
have ultraviolet cutoff precisely at k~< 2h']. Hence, it behaves as a hard 
line of scale h' with the power counting (in the dimensional estimates 
corresponding in this case to those of Section 10) of (8 ,+  io~d) ~9- and 
contribute essentially only on the scale h' [and therefore no localization 
operation is necessary to control their contributions on scales h <h ' ,  
which explains why 5f has been extended as described after (15.29)]. 

An explicit calculation of the lowest orders of the beta functional is an 
easy repetition of the previous calculations. The only difference is that one 
should take into account the contributions from the new two-line vertices 
(which, however, start at fourth order in the 2h equation and third order 
in the 6h equation). 
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The result is very similar to the normal scaling case (11.31): 

2h__l = 

6h_1 = 

~2 (z~/z~_ 1) ~ I-;.,, + ~ B,(~.,,) + ,~,,,~,, e~(,~,,, ,~,,) 

+ v]B3()~ h, C~h, Vh) + 2hRl(2h, 6h, Vh, 2h)] 

(Zh/Zh-l)[Oh -1- )-2(~hn4(~h) q- v2 Bs(]th, ~h, Yh) 

+ 2h/~Z(2h, 6 h, Vh, 2h)] 

Vh-, = 2(Zh/Zh ,)[Vh + Yh~,2hB6().h) (15.30) 

.-}- C~h~,2 B7(2h, Oh, Vh) + 2hR3(}~h, Oh, Vh, 2h) ]  

(Zh/Zh_,) [ 1 + Z~ Bs(2h) 

"q- ~),,)'2hB9(l~h, (~h)-~ )~2h'ghBlo('~h, 6h, Vh) 

-k- 2hR4(J-h, (~h, Vh, 2a)] 

= 

where we have computed a little more carefully the lowest terms to find out 
the minimal power to which each running constant is raised; and the func- 
tions Bj, Rj are analytic in their arguments 2h, 6h, Vh (with a suitably small 
radius M of convergence). This convergence, for I2k[, Ivkl, 16kl small 
enough, should again be a consequence of ref. 19, with the same warning 
spelled out in the comment following (14.4) and in the Introduction. 
Furthermore, the Bj can be taken h independent (note, however, that the 
/~j, depending explicitly on t = 2  h, introduce an h dependence). The /~j 
vanish to second order in 2h, 3h, Vh. 

Note that the terms depending only on 2h are missing from the second 
of (15.30) in the B part: this is essential and it represents one more motiva- 
tion for introducing the anomalous dimension. They disappear as a conse- 
quence of the fact that at each step 6h is essentially the difference between 
the old running constants eh -- ~h and the variations of c~h, ~h have the same 
term of O(2]); see the B5 terms in (11.31). A moment of thought shows 
that this may mean that the discussion of the qualitative behavior of the 
iterates of the map (15.30) is rather different from the corresponding 
normal scaling case. 

The lowest orders of the functions Bj are explicitly computable; for 
instance, B1(2)= f13-~ "' " or B8(2)=/~  + ..-, where the coefficients ]33,/~; 
are the same as those already introduced in the case of the normal scaling 
discussion [see (15.4)]. 

It is convenient to eliminate completely the factors Zh/Zh_ 1 from 
(15.30), using the last of (15.30) and expanding the denominators in 
powers series: 
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3 ~2  2 2 
= V h 2 h G 3 ( 2 h ,  Vh) 2h 1 "~h-l-2hal(2h)-l-6hohG2(2h,(~h) -[- 6h, 

4- thRl(2h, 2)h, Vh, th) 

6h 1=6h + 226hGa(2h, 6h) + 2]vhGs(2h, 6h, Vh)+ thR2(2h, 6h, Vh, th) 

Vh 1=2Vh+Vh22G6(2h,6h, Vh, th)+6h2]Gv(2h,6h, Vh, th) (15.31) 

+ R3(2h, fib, Vh, th) 

t h _ l = 2  It h 

having set th--2+h: the functions Gs, R s are smooth in the (trivial) 
parameter th to any order and are analytic in their arguments 2h, 6h, vh for 
small values, uniformly in th. The Rj vanish to second order in the 2, 6, v 
variables. 

Clearly the first question is whether f13 ~ > fl'2- If/13 < 2/1'2, we see that 
the first and the fourth of (15.30) have interesting consequences. If by fixing 
suitably the initial 6o (i.e., the initial ao) and Vo, the constants 6 h and v h 
approach 0 as h--* -oo ,  then 2h--*0 as h--* -oo  and this happens at the 
rate 0(1/Ih[1/2); hence 

0 
/ 2 Z h ~ e x  p ~ log(1 q-/12,)~l:)~c [hi (15.32) 

k=h 

and a more careful analysis shows that c=/1'222[1 +O(2o)], and we see 
that we have, in this case, logarithmically anomalous scaling with exponent 
c ' =  1 and c proportional to 2~. 

Let /13 > 2/1'2 and consider the analytic function B(2)= 22G1(~.). Then 
we look for a nontrivial solution 2* of the equation 

2 = 211 + B(2)] (15.33) 

Clearly the existence of such a solution would be easy if the size of the 
ratio/13/2/1'2 was very big and if/131 was very small compared to the radius 
of convergence of the series for B~, B8: and in this case the point 2* would 
be an attractor for the map 2' = 211 + B(2)]. Therefore it could be possible 
to deduce from (15.30) that if 2o was small enough, then Vo, 6o could be 
so chosen that the complete flow behaved as 

2h--~2" , 6h, Vh--*O , Z h , . ~ 2 - 2 e h = - [ l + B s ( 2 * ) ] - h > l  (15.34) 

and therefore we would have positive anomalous dimension independent of 
the actual value of the initial 20. Heuristically this should mean that the 
singularity at Ikl = PF of the Fourier transform of the Schwinger function 
changes nature from the discontinuity of (0.2) to a singularity 
Ik 2 -- p2l ~-' sign(pv -- Ikl ). 
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The existence of the nontrivial fixed point could be checked if the 
above inequalities among the constants /~;, f13 and the radius of con- 
vergence were strong enough: one could envisage trying a computer- 
assisted proof of this fact. One is, however, a little hesitant at starting this 
program, as there is no guarantee that it will work, since the inequalities 
we hope for are, in any case, just sufficient conditions for the existence of 
the anomalous Fermi surface. 

Fortunately, this extra work, and a rigorous analysis of the above 
possibilities, seems not to be necessary at all. There is a third possibility, 

' T  not yet examined, namely f13 = 2fl2., and one may even envisage that in 
(15.31) 

G 1 - 0  (15.35) 

i.e., the leading term in (15.31) vanishes, and one is left only with the 
corrections to scaling containing the asymptotically vanishing factor 6, - 2h 
and terms containing vh or 6h as factors. 

This is a very interesting possibility: philosophically, the best, because 
it permits one to have an anomaly which varies continuously with the 
strength of the interaction at least for small interaction. In such a case the 
flow will be entirely determined by the terms proportional to th and hence 
of size o(2h), and it will be very trivial. Fixing conveniently Vo, 6o, we 
would have a flow in which 

Zh 1 
2h h~-oo '  2 oo(20), 3, 

Z h - i  h - - ~  ~(2o) 

Vh h ~ - ~ O '  6h h~--~'O 
(15.36) 

with 2 . . . .  ( ~ analytic near 20 = 0 and with 2_,~o divisible by 20 and 
log ~(2o) positive near 0 and divisible by 22. 

Since the series for the Gj are convergent, the above is the only way 
one could have a flow of running couplings implying anomalies of the type 
(15.36) under the additional assumption that 2h, 6h, Vh never get out of a 
circle of radius 0(20). This is an anomaly 2t/=log2 ~C(2o)= 0(2o2)>0, 
which is very different from the previously considered ones, which were 
independent of 2o. 

Of course, one could envisage intermediate cases in which the func- 
tions Gj vanish up to a finite order only. This would not change the situa- 
tion, as it is easy to see that if they vanish to order n, then the anomaly 
is logarithmic with c' = 1 - 2/n, hence again independent of 20 and different 
from (15.36). 
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Therefore, a way to prove that (15.35) holds is simply to show the 
existence of a model in which there is anomalous dimension analytic in 2 o 
at 0 and in which the flow of the constants 6h and vh is trivial. 

It is not even necessary that the model be in the class introduced in 
Section 1 and considered so far; it is sufficient that it can be studied via the 
renormalization group and that it is described by a beta function with the 
same Gj as above. 

Such models do indeed exist and can be taken to be the Luttinger 
model or its slight variation introduced by Mattis and Lieb(25-27): the exact 
solution of such models by Mattis and Lieb (26'27) shows that it has 
anomalous dimension ~/= O(21). 

We shall choose here, as a reference model, the above Mattis-Lieb 
variation of the Luttinger model and not the Luttinger model itself (which, 
in many respects would be equally good) because (a) the  variation has 
been adapted to spinning models, (3~ and later we want to make some com- 
ments on the extension of our work to such cases, and (b) the  bosonic 
representation (15.46) used below works for the Mattis-Lieb model. 

On the other hand, the Mattis-Lieb variation of the Luttinger model 
corresponds in our language to a model confined in an interval [0, L ]  with 
periodic boundary conditions and with propagator 

g(t, x; m) = dk o 
e i(kO t + kx  ) 

dk (15.37) 
- ik  o + fl r 

with an interaction somewhat artificial because it cannot be written in 
terms of the particle fields ~bt, x but only in terms of the fields O(,,x),,~, which 
are the quasiparticle fields (thus deprived of a direct physical interpreta- 
tion). Nevertheless, it is an interaction acceptable by our formalism, which 
works always in the quasiparticle language. The interaction is defined to be 

f dt dx dy ).o(X - y) 6 ( t -  t') 

- )(zo+ - )  
)< IP (t, x),  o~ I/1 (t, x),  to (t ' ,y),m@(t',y),oJ 

o) / \ o l  

+ ~ f vtp+o,~bx, o, dx + f a dx + AE (15.38) 

where v, a are suitable (possibly divergent) constants, and AE is a trivial 
extra term [described below; see (15.40)]. 

We shall fix our model to be (15.38) deprived of the extra term AEjust  
because some formulas are neater (but we stress that this modification 



Perturbation Theory of Fermi Surface 647 

changes the Mattis Lieb model in a trivial way: the energy levels are 
shifted and the Schwinger functions do not change). 

The reason for the introduction of the v, ~ constants has its root in the 
fact that (15.37), with a linear dispersion relation, gives rise to theories with 
an ultraviolet problem. 

The v, a can be determined by the introduction of a sharp ultraviolet 
cutoff, say at 2Vpo with po  1 =range  of the potential 2o; and by imposing 
that the field theory is well defined on scale 0 and on this scale it is 
described (uniformly in U) by an effective potential V (~ which has short 
range in the same sense in which the effective potentials V (h) in the 
previous theories have short range for h < 0. 

In particular, it will be possible to identify a relevant part and an 
irrelevant part of V (~ and, setting Zo = 1, proceed to study the flow of V (h~ 
for h < 0 in the same way as in the real model: it would be simpler, as one 
can now simply use only the quasiparticle fields without needing the sym- 
metry allowing us to switch from particle fields to quasiparticle fields when 
desired [this is quite fortunate, as the symmetry, in fact, is not present in 
this case, being already broken in the initial interaction (15.38)]. 

It should be noted that v, a do depend upon the ultraviolet regulariza- 
tion chosen to give a meaning to the initial Hamiltonian. Such ultraviolet 
regularization is not explicitly mentioned in refs. 25-27; it appears, 
however, that the authors proceed as if one had a sharp cutoff at frequency 
U on the space momenta (i.e., there are no particles or holes with momen- 
tum Ikt ~> p02V). 

In this case, however, since the model is soluble, one can in fact even 
compute explicit expressions for the counterterms. It is easily found (by 
suitably interpreting ref. 26) that the correct choice is 

v=-4(ZUpo+pv)2(O) /27c ,  a=(2Upo+Pv)22(O)/~  2 (15.39) 

This result stems from the fact that one can check that the interaction 
(15.38) in the Grassmanian fields corresponds to a Hamiltonian of inter- 
action equal to the operator H '  in (4.6) of ref. 27 plus (using here the 
notations of ref. 27) a (finite) correction: 

1 * * -a~,2ak,2) (15.40) AE=J'(~OL) k o (ak, lak,1 --a_k, la k,1 +a*~,2a-~,2 * 

Alternatively, one can see that (15.39) inserted into (15.38) can be simply 
rewritten as (15.38) itself without the ~r, v terms, provided that in the 
fourth-degree interaction term one replaces the 0 + ~ -  products by their 
Wick products: this prescription seems better, as it is formally regular- 
ization independent. If we decided to use a regularization with rotational 
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symmetry (for re/2 rotations) in the space of (ko, k), then the Wick product 
would coincide with the ordinary product because the propagator so 
regularized would vanish at zero distance, by symmetry. In this case the 
parameters v, ~ would vanish, i.e., they would be very different from those 
in (15.39). 

The extra term (15.40) in the interaction is an operator which com- 
mutes with the rest of the Hamiltonian: hence our variation of the 
Mattis-Lieb version of the Luttinger model is a trivial one and it can be 
solved by exactly the same method and leading to the same ground state 
and to the same pair Schwinger function [the excited levels are trivially 
related to those of the model without the extra term (15.40)]. 

For  purposes of comparison with refs. 26 and 27, one considers 
operators in Fock space, making the following identification of the 
operators 0 ~, 0 f with our 0 + : 

-t- ipF x ' [ t  +-- O f ( x ) +--). e -y- ipF x,h ++- (15.41) 0 + ( x )  +--~e v" ~x,o),+, 'r (x,O),- 

Note that in refs. 26 and 27 only the fields 0 f ( x ,  0 ) = 0 ~ ( x )  are 
considered; but consistently with Section 2 here, one could introduce 

0 f ( x ,  t) as 

0 f ( x ,  t) = etT~ (x) e -tT~ 

To = dx { [-0~-(x) 00~ - 0 f  (x) 00~- ] 

- pv[-0 + (x) 0i- (x) + O ;  (x) O~-(x)] } (15.42) 

so that, in general, 

0~ (x ,  t )=e+iPrxO+ 0 f ( x ,  ,~ - o-'-ipvx,/, + (15.43) ( ~ , o ,  + ,  ~J  - ~ ~- ( x , t ) ,  

Proceeding as in Section 3, one can put the problem in the language 
of functional integration with respect to Grassmanian fields with 
propagator (15.37). 

In this model the ultraviolet cutoff is lowered from U to 0 by using 
methods of superrenormalizable field theory. The lowering of the cutoff is 
a necessary step because our methods work only if the range of the interac- 
tion is the same as that of the ultraviolet cutoff. In the real model this is 
a minor problem (as mentioned in the Introduction), but in the case of the 
Mattis-Lieb model it is more serious. 

The reason is that the free propagator behaves, in momentum space, 
as 1/Ik} when either ko or k goes to m: while in the real model the behavior 
as k --+ m is as 1/k 2. 
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For heuristic purposes one can begin by studying a formal perturba- 
tion theory expression for the effective potential, on scale Po 1, V(O): and in 
fact this suggests what to do to go beyond the formal level. 

One starts by integrating the high-frequency components of the field 
(i.e., the frequencies higher than Po) directly in one step, without using any 
scale decomposition. We do not use the graph elements of Section 8, (8.1), 
(8.2); if we adopt the convention of writing the interaction in Wick ordered 
form, there is only one graph element that matters, namely the first of (2.6). 

If one examines the perturbation theory formulas for the effective 
potential, one realizes that ultraviolet divergences can only be present in 
subgraphs of the form 

co 

....*'"" "'"',,,%, 

.................. " .............. -.. ............... (15.44) 
% ...' 

"",., .,,.'" 

However, the (logarithmic) divergence is canceled by the summation 
over co and by the symmetry between space and time, so that there is no 
divergence and the momentum dependence (at large momenta) of the sub- 
graph (15.44) is ~(k) 2 a(k) with ~(k) bounded [-instead of the a priori 
a(k) ~ log [k[ ]. Hence, no divergence really arises--as expected from the 
above property of the exact solution, which implies that the problem is well 
defined as soon as one writes the interaction in Wick ordered form. It 
also appears that once a(k) is bounded, the sign of the initial interaction 
potential does not matter, as long as the strength is small enough. 

The above argument shows that there is no problem at the level of 
perturbation theory: if, however, one wants a fully nonperturbative 
analysis, one has to discuss the mechanism which permits us to put bounds 
on the kernels defining the effective potential V (~ We can do this under 
the extra assumption that the initial potential is positive definite: however, 
we think that this is a limitation due only to the technique that we develop. 
And if one just wants a perturbative theory without control of the con- 
vergence, this limitation is not necessary, just as it also emerges from the 
study of the exact solution in ref. 26. 

Assuming 2 ~> 0, we simply use the well-known trick of the introduc- 
tion of an auxiliary boson field Ox.t with propagator F with Fourier trans- 
form 

F(ko, k) = 2(k)/~(0) (15.45) 
and write the interaction 

2(0) 1/2 f q~x:~zxL~x~: dx (15.46) 
co 
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which, upon integration over ~0, manifestly generates the Mattis-Lieb 
model. 

We study the model (15.46) by decomposing the propagators into 
scales by writing 

F(ko, k ) -  ~ Pn(k) 
n - - 1  

=_ {exp[-(k~+k2)po2/4]} ,~(k)+ ~ {exp[-(k~ +k2) po22 -xn] 
n - - 2  

- exp[-4(k~ + k 2) po22-2"] } ,~(k) 

~(ko, k) _= gr ~ go(2nk) (15.47) 
n = l  

where we note that the decomposition of g has exact scaling properties 
(because it corresponds to the propagator of the Mattis-Lieb model and 
hence it is different from the one considered in Section 4 valid for the 
analysis of the infrared problem in the real model: note, however, that go 
is nothing but the function appearing in the leading term of the infrared 
propagator of the real model). 

We analyze next the size of Fn(x) and we easily find that it is bounded 
uniformly in n by const-2 n. The size of gn(x) admits the same bound. 
Hence we can perform the usual dimensional analysis of the size of the 
interaction at high frequency/17~ Replacing ~0 by const .2 n/2, and ~ by 
the same quantity, and restricting the integral to a box of size 2-2npo2, 
we see that the size of the interaction at large scale (i.e., large n) is 
const.2(0)2 -n/2. Hence, the model is still asymptotically free in its 
ultraviolet part and even superrenormalizable. It can have divergences up 
to order 4 in perturbation theory: but the interaction structure is such that 
only even orders in the coupling can be present and furthermore the expan- 
sion parameter squared is the size of the potential. Hence, the only 
divergent graphs are to be looked for among the terms of second order in 
the potential 20 [which are already of fourth order in the sense of (15.46)]. 

Therefore we can apply known expansion methods of constructive 
field theory for renormalizable theories; see refs. 24 and 32 for the most 
recent developments. 

Ours can be regarded as a two-dimensional Yukawa theory with a 
boson propagator less singular than usual; furthermore, the general techni- 
ques of ref. 32 can be applied to our case. 

In this way one shows that the effective potential on scale 0 is a 
short-range potential with many-body components (i.e., terms containing 
any number of ff -+ fields) which become very small as the number of bodies 
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increases. Since the field ~0 has no components on scales lower than Po, the 
effective potential V ~~ can be taken as the starting point of our infrared 
analysis. The novelty is simply that the initial number of irrelevant terms 
is not finite, because of the fact that the effective potential contains com- 
ponents with arbitrarily many fields. 

The latter is not a big problem because even if we had only finitely 
many components in V ~~ we would immediately generate infinitely many 
new ones after the integration of the first infrared component of the field. 
Thus, we only have to check that V ~~ obeys bounds on the kernels of the 
n field terms which are no worse than those that V ~-~) would obey in the 
case it was generated by an initial interaction with only finitely many 
terms. This is precisely the type of bounds that are provided by the known 
methods (24'32) for the kernels of the effective potential on scale 0 generated 
by a superrenormalizable, or even just asymptotically free, interaction. One 
also finds that in such cases the kernels for V (~ admit an asymptotic 
expansion in powers of the initial coupling, which in our case might even 
be convergent. 

From this point on one continues as in the realistic case treated above. 
The fact that the propagator (15.37) is on al l  scales  our scaling propagator 
makes the theory of the beta function even simpler because the parts 
proportional to th = 2 h, which were corrections to scaling, are absent and 
the functions Gj which only depend on the scaling propagator are the s a m e  

a s  OUFS. 

At this point we have to make an assumption that we have not been 
able to deduce from the exact solution: 

A s s u m p t i o n .  The running couplings in the Mattis-Lieb model stay 
smaller than C20 for some constant C for all values of h. 

From the above argument, we know that they start being as small as 
desired and from the exact solution [see (15.48) below], we know that they 
end up being as small as desired; unfortunately, one cannot exclude yet 
that while going down in frequency they become large, leaving the pertur- 
bative regime and returning into it. This event, which we consider unlikely, 
can perhaps be excluded by a more careful analysis of the exact solution. 

Furthermore, we consider the appendix of ref. 26 and note that our 
2(0) is half the quantity denoted 2v(0) in ref. 26. The results of refs. 26 and 
27 prove that the model shows anomalous scaling with r/given by 

2q = { [1 + 22o(0)/~z] ,/2 + [-1 + 2,~o(0)/~r ] 1 / 2  _ _  2 }/2 = ~o(0)2/27~ 2 § -.. 

(15.48) 

where ,~o is the Fourier transform of 20 and, in our notation, coincides [see 
(15.38)] with the quantity 22v(0) of ref. 27. 

822 /59 /3 -4 -8  
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Note also that if we start from an initial interaction containing a non- 
zero ~ coefficient and a nonzero v coefficient, the model is of course still 
soluble, because this amounts simply to changing the value of Pv and of 
the coefficient of ~ ,  thus affecting in a trivial (analytic) way the end result 
(15.48). 

This result holds for any choice of 2o small enough, a property incom- 
patible with a flow described by (t5.31) unless G 1 - 0 ,  if one accepts the 
assumption above. 

The realistic model and the Luttinger models have the same G1 
functions; hence G1 = 0 for both. 

If G1 =0 ,  the flow (15.31) is easy to study. We look for a solution in 
which r =7h(~h, Vh =ThVh, th = 2h, and 3h, fh tend to zero. The recursion 
becomes, for any Y, 

-2 42 h 2h- 1 = 2h + Yh[~h2~G2(2h, ~h) -[- VhAh7 G3(2h,  ~h, ~h)] 

+ thRl(2h, ~h, Vh, th) 

~h-1 = 73h + 223hTG4(2h, 3h) + 229hTGs(2h, 3h, gh) 

+ thT--hTR2(2h, Sh, Vh, th) (15.49) 

~h-1 = 2~h + ~h22~G~(2h, ~ ,  ~h, th) + 3h2]~GT(2h, 3h, 9h, t~) 

+ th~--hyR3(2h, ~h, Vh' th) 

th 1=2 IIh 

Taking 7 between 1 and 2 and fixing 20 small enough, it is clear that one 
can find 3o, Vo so that 3h--*0, 9h--*0 as fast as 0[(2/7)h], SO that 6h, Vh 
tend to zero as O(2 h) while 2 h --+ 2 oo. 

If there is a flow on (2, 6, v) satisfying (15.31) and staying bounded of 
O(2o), it is clear that G1 - 0 is the only possibility. 

It follows immediately that, if the above assumption holds, all the 
short-range models in one dimension have an anomalous Fermi surface at 
small coupling: the anomaly is correctly caught by the Luttinger model. 
Probably at large coupling the anomaly remains and follows the pattern 
predicted by the Mattis-Lieb exact solution of the Luttinger model; see 
ref. 26. The only exception is the set of models for which 2 co vanishes: 
such cases are not generic, as the 2oo = 20 +/72~ + --. depend analytically 
on 20; the value 2o depends smoothly on the initial interaction and to first 
order it is ~ ( 0 ) -  3.(2pv), as can be checked immediately by an elementary 
perturbation calculation. This concludes our analysis of the one-dimen- 
sional cases. 
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Note that we do not have to require, in the realistic case, that the 
interaction be positive definite. Positive definiteness of 2o is used above 
only as an intermediate step to conclude, via the theory of the Mattis-Lieb 
model, that G1 = 0. If, however, in the realistic model the interaction is 
positive definite, then we can use the above method of introducing an 
auxiliary boson field to solve the ultraviolet problem mentioned at the 
beginning of the Introduction. Hence the theory is complete in this case. As 
mentioned in the Introduction, we do not think that this is a serious 
problem even in the attractive case, for small enough interaction. Physi- 
cally the only thing that could conceivably go wrong is the extensivity of 
the lower bound on the energy levels, i.e., the thermodynamic stability: but 
if d = 1, the indeterminacy principle allows us to consider a negative inter- 
action without destroying stability, provided it is not too large. 

The degeneracy of the second order in (15.2) (which tends to 0 as 
h-+ - o e )  does not occur if there are more degrees of freedom: if we 
suppose that our fermions, and the quasiparticles as well, carry a spin 
described by an extra label a attached to the fields, the formalism that we 
have described applies unchanged, with the obvious addition of the extra 
labels. As an illustration, we present a particularly simple spinning model. 

The model has a potential 

f 2o(X - y):Ox+~ r ~,yo r dx dy dt (15.50) 
o', o" ~ +1 

which represents a spin-symmetric interaction. Its relevant part is of the 
form 

4 

f dx 1-[ do)i eipF(~~176 ~ c~ x/~0t [(/) l '  (2)2, (/')3' (04) 
a,o" = +I  i=  1 

+ + 
Xl[g . . . . .  I~IX, G',O)2~IX, d',O~3 ~l . . . . .  4 (15.51) 

where, if 2 ( (0 - (0 ' )=  '~o(PF((0--CO')) denotes the Fourier transform of ).o 
evaluated at the difference between a pair of Fermi momenta, one has 

)L0((J)l,  092, 093, (04)  = [-/~((01 - -  (04)  -~- )L((02 - -  c%)]/2 (15.52) 

The coupling 20((01,(02,(D3,(04) in (15.51) has some symmetries, 
which are preserved by the (normal scaling) beta function, that is, 

)~O((DI'  ( 0 2 '  (L)3' ( J ) 4 ) =  / ~ 0 ( - - ( 0 1 '  - - ( 0 2 ,  - - ( 0 3 '  - - 0 ) 4 )  

= fl~0((02' ( 0 1 '  (O4 '  (03)  = )~0(0)3,  (294, (2)1, 0")2) (15.53) 
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This reduces to five the number of independent parameters; for example, 

y~=2o(1,  1, 1, 1), y2 = 2o(1, 1, 1, - 1 ) ,  y3 =.~o(1, 1, - 1 ,  - 1 )  

y 4 = 2 o ( 1 , - 1 , 1 , - 1 ) ,  y 5 = 2 o ( 1 , - 1 , - 1 , 1 )  (15.54) 

The evaluation of the second-order beta function is straightforward 
but laborious. One finds, up to terms vanishing exponentially in h --* - 0 % 

Y] = Yl, 

Y; = Y3 -- 2~y3(Y4 -- 2y,), 

Y; = Y5 - 2/~y] 

Yl = Y2 -- flY2(2y4 -- Ys) 

Y~ = Y4--4fly] (15.55) 

where /~ is a positive constant. It is easy to see that in this dynamical 
system no trajectory approaches the origin: i.e., the introduction of the spin 
does not change the nonasymptotically free nature of the model. 

The above remarks show that we cannot make a connection with the 
theory of the model of Gross and Neveu as treated in ref. 19 because we do 
not have asymptotic freedom to second order. Nevertheless, the part of 
refs. 19 and 24 dealing with the convergence of the beta function series for 
small enough M [see (14.1)] still applies to our spinning case. Hence also 
in the spinning case one may hope to learn more from the analysis of the 
higher order contributions to the beta function. One could look for 
anomalous behavior: the question, however, deserves a separate analysis 
and we hope to come back to the problem in a future publication. 

Note that the problem looks quite hard because of the many marginal 
directions: as a dynamical system, this is a rather pathological one due to 
the resonances associated with the number of marginal directions. 

It is unclear if the model introduced by Mattis (3~ as a spinning 
variation of the Mattis-Lieb model (26'27) used above can play the same role 
as the Luttinger model did in the understanding of the spin-0 case. In fact 
in this model: 

x - -  y ) . ~ I x t a e ) ~ l x t a m .  .~Iy t~ ,eo ,  I ] ly t  , c o , . "  + --  ' " + --  " V= ~ f dx dy dt &o de)' 2o( 

(15.56) 

so that the relevant part has the form 

= ~ 0 " + + - -  Vc ~ f dx de) do' 20( ).@ . . . . .  tpx, o, ~o,0~,~,,o~.~f,~,o~: (15.57) 
~r, c r '  = •  

This implies 

y2=Y3=Y4=O, yl = ys = ~o(0) (15.58) 



Perturbation Theory of Fermi Surface 655 

These conditions are preserved exactly by the beta function to all orders, 
so that there is really only one parameter, as in the spin-zero case. For the 
potential (15.52), on the contrary, one has 

Yl = Y5 = )40), Y2 = [2(0) + 2(2)]/2, Y3 = Y4 = 2(2) (15.59) 

For this initial condition the dynamical system (15.52) is diverging, unless 
2(0) = 2(2) = 0, which in any case is not preserved, if one takes into 
account also the terms vanishing in the limit h ~ -oo.  

In conclusion, the ideas of Tomonaga, which are the basis for the 
Luttinger model, seem to be not easily generalizable to spinning models 
(see also ref. 29, concluding remarks). 

A P P E N D I X A .  P R O O F  OF (4 .2)  

Let P=Pv, fl-p/m; let Po be fixed and ce=~'po22 -2n, r=2~po t. 
Then, denoting by s 2nd/2F(d/2) -1 the surface of the d-dimensional unit 
sphere and denoting by 0 the angle between x and k, one has 

g~(x, n 

=po22  2nf 1 fdko dak 
1/4 d~' (2re)a+1 

x {--p022 2~a'Ik2-~ (kZ-P2)2] a} 
exp ~ m  2 j -- ik o t - ikx cos 

k 2 _p2,~ 
•  

~2dp022 2n 1 
- 

xexp { - p o 2 2  2%~Ik~+h2(h+ 2p)2~'~ 
)~r Jl 

h(h + 2p)'] • -2--m /I 

~ ( ' ~ d p d g n f l f f o o  ( p ) d - - 1  
- -  ( 2 ~ ) a +  1 1/4 d~  dk o dh + 2"h 2 - np/pO 

xexp{ - [k2+h2( l+h2  ~ 1~)2 j~2] ~} 
xI+iko+h(l+h2~-l~)fl  ] [exp(-iko~)]J(a)Ipx(l+~ff 2~h)] 
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_f2  art~/2Pa2" po [ 1 d~ + ~ ( 1 + 2 , h ~ 2 )  
(2re) a+l P J1/40~l/2 f 2 "p/po dh d-I 

1 de // --r2"~[-"C 1 o g*~.(x) (A1) 

where, if J~ denotes a Bessel function and F is the gamma function, we set 
[see ref. 21, (3.915)-1, for dimension d >  1, 

(. 
j(a)(y) = j e i y  oo~ a do) 

_f2a-~ e-iyoos~(sinO)a-Zd~ 
f2a 

ff2d_ 1TO 1/2 
t 2/ 

Note that j(a) is expressed in terms of Bessel functions trivially related to 
trigonometric functions in the case of d odd. The above equalities hold for 
d>~2: the case d- -1  is easily treated because the integration over ~ 
becomes an average over the two values ~- -0 ,  ~. 

If j = 0 ,  1, 

J --~2arcl/Zpa2np--~ p [ P/PO ( ~)d--1 g=, . (x)-  J-2 dh 1 + 2~h 

x h 1 +2 n th 

x e -h2(1 + h2" lP~162 ] (A3) 

Note that the integrand has a symmetry in h around -2-np/po: this per- 
mits us to rewrite (A3) as an integral from - oo to + oo provided the con- 
stant in front of it is divided by 2. Once the integral is written as an integral 
over the whole line, we can remark that if z ( k ) =  ~-1/2 S~_~ dq exp _q2, so 
that z ( k ) +  z ( - k ) =  1, then we can freely insert in the integral the function 
2)~(h+2 "P/Po). After performing the above transformations we can 
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develop j(d) via the trigonometric addition formulas and extract from the 
integral trigonometric functions of px.  

Consider the case of odd d = 1, 3, for simplicity, obtaining 

g.=2 ~ ~ sin p!xl -~'~, v) +2"P~ cos p Ixl g,~(%, r)], 
L p Ixl ~nt P 

~. = 2"[cos p x  gS(G z) - sin p x  g~(~, z)], 

d = 3  

d = l  
(A4) 

where { = 2"po x and we have defined 

aS/~/po 
g;(~)- ~2-77vr7 

x ja/4~]-~j  o~ dh l + 2 " h  

x [ ~ - ~ - h ( l - ~ - 2 n - l h ? ) j ~ ] z ( h - ~ - 2 - n ~ )  

X e - r2 /4~e -h2 (1  + h2n Ip~ ~f12 

{ '~sin(h [~l)/I-I~l ( l+2"hpo/P)]  if a = e a n d d = 3  

~cos(h  [~1)/(1-4-2 @o/P)  if a = s a n d d = 3  (A5) 
x ~cosh~ if a = s a n d d = l  

�9 [s inh~ if a = c a n d d = l  

We get the bounds in Section 4 simply by breaking the trigonometric 
expressions inside the integrals via the Euler relations and, finally, shifting 
upward or downward the h integral to a line with constant nonzero 
imaginary part. 

The function g.(~, z, to) defined in (4.5) becomes, with the help of 
(4.8), 

g.(~ ,  z, to) = g~(~, z) + 2~(po/p)  g~(~, z) - ito~g~,(~, z), d =  3 

g. (~,  r, co) = g~(~, r) - icog~(~, r) d =  1 
(A6) 

where t o e S  2 if d = 3  and cot { - 1 ,  + l ) - - S  ~ if d =  1. 
If n ~< 0, the functions g.(~. ,  %), with ~. = 2nXpo, r .  = 2ntpo, can be 

written, for any pre-fixed r >/0, 

g n  = gO + . i 2n 2 rn r 2 g . + 2  g . +  " + 2  g.  (AT) 
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with gi having the form of a polynomial times a superposition of Gaussians 
2+  {~/f12, the z satisfy the bounds for i = 1 ..... r -  1. Furthermore,  if z~ - r n gn 

Ige~l ~ Cr,~c e x p [ - ~ : ( z , ) m ] ,  i =  1,..., r (A8) 

The leading term in (A7) is 

gO_ 12anp~ Po (rn- i f l  10)~n ) ~O(Zn) (A9) 
2(2n) a+l flPv 

which comes from an evaluation of the integrals in (A5) when n--, - o %  
with 

f l e z/4~ do~ (A10) 
~)J(Z)= 1/4 O~ 2+j 

The analysis of the case n > 0 is algebraically similar. Since we are not 
interested in decomposing Z ~  gn into its components,  we can use for it the 
expressions (A3), (A5) with n = 0 and the ~ integral extended between 0 
and 1/4, rather than between 1/4 and 1. 

A P P E N D I X B .  F O U R F O L D  I N T E G R A L S  OVER T H E  
F E R M I  S P H E R E  

Let (01, 0)3, 1.0, r be unit vectors and 1 2 = ~ 1 + 0 - c 0 3 - 0 ~ ' ,  A =  
o~ 1-e~3. We introduce a test function F and consider the integrals in 
(13.22). 

To find the appropriate  coordinates, we write 

o~+A 
o ' = 0 ~ 0 +  p, I o + A [ = l + a  (B1) 

o 0 - I o + A I  ' 

and denote by 01, ~ol the polar coordinates of p in a frame with z axis 
parallel to o~ o. Then 

p" O~o = p cos 81, p = - 2  cos 31, p.  o o = -p2/2 (B2) 

The volume element for m' is then 

d01 d~01 p dp d(Pl d2pl 
do~' = 2p sin 01 4n 4n 4n (B3) 

where Px is a vector with modulus IP~I = P and anomaly q91, to be thought 
of as lying in the plane tangent to the sphere in o~ o. 
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The vector o will be described in a system of coordinates on the 
sphere with z axis parallel to A. Let (02, q~2) be such coordinates; using 

(1 +0-)2= 1 + A 2 + 2 o  �9 A 

= 1 -Jr- A 2 q- 2A COS 02 (B4) 

(1 + 0-) da = Ad(cos a2) 

we find 

d o  = s in ~12 dt~2 _(]92d = 1 + ~  d~r d~p2 ( B 5 )  
4~ 4hA 

The integration domains and the volume elements are 

1 + 0- dq0 2 do- d 2 p l  
O~lpl[~<2 , IO'[ ~< /i, dodo'=---~ (47z)2 (B6) 

The main variables are 

~ = o + A - o ' = a o 0 -  p 

~'~2 : 0.2 _[_ p 2  - -  2ap" o 0 = 0 -2 -~- (1 ~- 0-) t0 2 

o ' .  f ~ =  a =__p2 , o "  f~ = ( o ' o 0 0 - -  p ' ~ )  

(B7) 

and the integral becomes 

da dq) 2 [N2e_N2[~2 +(l +~r)p~] ] 

F(~176 �9 "E~]F x [ ~- + S 2 o  ~ o '  (BS) 

The leading behavior for N ~  oo is obtained, therefore, by setting 
0- =0,  pj = 0  in the regular parts of (B8). In this case the vectors o,  o '  are 
forced into a flag configuration: 

O '  = R~02r O = Rq~203 ,  O - - O ' =  - A  

O ' O o ~ O  1 ~  o "  l l o "  ~cl = 0 1  " 0 3 0 - 2 +  . - .  (B9) 

E � 8 8  o ' )  2 + N 2 o  �9 t l o ' .  t l ]  = E�88 - o 3 )  2 + oL .  o 3 N 2 0  -2 + - - . ]  

and the integral becomes, to leading order, (13.24). 
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The corrections to (B9) have relative order O(N 1). The above 
argument also leads to a rigorous bound on the integral of the form 
[J(N [o 1 - o3l) + O(N-1)]  max IFI with 

1 r e x 2 
J(x) = - J 0  y2e y 2 < _ _  (B10) x 1 + x  3 

Using the spherical harmonics expansion of 2 in a system of polar coor- 
dinates with A parallel to the z axis, in which o 1 = (~9, 0), o 3 = (~z- ~9, 0), 
we can write (13.23) 

1 2 "~'Al'Ylm(~ Yrl m'(tg,0)2 [e--imq'+(--1)m](eim'q'+l)(--l)m' (Bl l )  
4 ll'mm' 

so that 

<g> ---- 1 Z ~'~1' Yl, m( O, 0 )  2 Y, '  m'( 0 '  0 )  2 
4 ll'mm' 

X [(~mm,(--1)m--~(~mo(--l)m'~-~rn,O(--1)m.-[-(--1) m+m' ] (B12)  

which can be used for an approximate analysis of the flow equations to 
second order. 

The three-quasimomentum inequality of Section 11 is a simple conse- 
quence of the change of variables leading to (B6). In fact, using (B6) with 
N = 2-h, we find, for suitable constants Cj and for any A, 

f lOh(o-  +A)[ O I d e  d e '  

lOt 1 "~- O" --/cN2[o-2 + (1 + o-) p~] <~ C1 ~ da d2pl NZe 

C2 
~< - -  (B13) 

I + N A  

where we use, for simplicity, the bound on the leading term in the 
propagator gh generating 6h (which explains the Gaussian term), and we 
denote IAI as A. 

Hence, if A = o 2 - k  , k = ]k[ o0, o2 = o 0 +  p, using (B3), we find 

f](~h(0") - -  + {-02 - -  k)] do2 O' d e  d e '  

d2p 
~<C3f 1 4 N i p l  

_<C4 ~'2 
" " N J o  dp. NR <~ (B14) 

2C4 
l + N p  N 

proving (11.9). 
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Another important inequality used in the derivation of the bound 
(11.26) is 

2h f do~ dx (2ht-- i2hfl lo) " x)  eiPV(t~176176 ) ~ C (BI5) 

where 7o(Z) is defined by (A8) and x 2 = t 2 + x2/fl 2. In the lhs of (B15) the 
integral of the term proportional to t is exactly zero and the remaining part 
can be bounded by 

fl ~2f C12-4h d~(1-o) -COo)e  2'~]322 2h(l-~176 (B16) 
1/4 

APPENDIX  C. A HEURISTIC ANALYSIS  OF THE FLOW 
OF THE R U N N I N G  COUPLINGS 

In this section we make precise the source of our interpretation that 
the running couplings flow indicates that the pair interaction evolves 
diverging as a deltalike interaction with integral 2 (" l)e, i.e., as 2 -h at its 
maximum. 

We deduce from (A7) that, to leading order in n, the propagator 
g(<-~)(x, (o, PF, fl) (we add the explicit dependence of the propagator on Pv 
and fl, as the coming analysis is based on rescalings) can be written 

g(~n)( x,  ~ ,  PF, fl) 
n 

= E gh(G) 

0 

s d P0 2" E 2h(G+h--ifl l(,O~n+h ) ~O(Zn+h) 
2(2~)d+ 1 fl Pv h= --~ 

~'2d~p d-1 t - - i f l - - l~X 
-~2(27c)a+~fl t2+x2/f12 G(2" Ixl Po) (C1) 

where Ixl 2 = t 2 + x2/fi 2, and 
0 

G ( y ) =  ~ (2hy) 27o((2hy) 2) (C2) 

Hence 

so that 

g(<-')(x, o), PF, f l )= 2"dg(<~O)( 2"x, 0), 2 -~pr ,  fl) 

Equation (C4) permits 

(C3) 

( / < • , )  _ ~ . u / 2 , 1 , ( < . o )  (C4) 
x , o ~ , p F , f l  - ~ W 2 n x ,  O~,2 n p F , f l  

us to find, heuristically and for the purpose of 
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motivating the intuitive statements of the Introduction and of Section 11, 
the relation between the running coupling constants in the quasiparticle 
formalism and the pair potential between the particles. 

We argue as follows: in a first-order calculation the relevant part of 
the interaction remains the same: 

v(n) = f 20(1il 1 , ' " ,  0)4) ei(`01 + ,02 ,o3- ̀04) XPF de h . . .  dx 

' '+( '<") '/' +('<n) " (-<')  0-(-<')  - (C5) 
X . t l , ,x , `01,PF,l~, t ,x , `02,PF,f l . , f f  x , `03 ,PF,  fl x , `04,PF,f l"  

On the other hand, (C4) tells us that 

f 22rid.d, +(<~o) 
v ( n )  = /~o(CO1 .... ) . ' g2  x , `01 ,2 -npF , f l  "" ": 

X e i(~1+`02 c~ ` o 4 ) X p V d x d O ) l . . .  

( 2 n ( d  - 1 ) ' f i t  + ( <<- O) 
= j )~0(0)1 .... ) ""VX,`01,2-npF, f l  " ' "  

x e i(̀ 01 +'~176 `04)xZ-,,pv dx de.%... (C6) 

Hence, we read (C6) by saying that the pair potential on scale n is, to first 
order and measuring the length scales with a unit 2 - "  bigger than the 
initial one, a pair potential w,(x) between fermions in a state with a Fermi 
surface at 2 "PF, mass m2 " (so that fi is unchanged), and such that [see 
(6.2), (6.4)] 

w,(x) = 20(2- 'x )  2 - "  (C7) 

Therefore our potential is a &like potential and is precisely an approximate 
delta function with width 2nro, ro being the range of 2o, and integral 
proportional to 2 (a 1)n; we write it as 

w,(x) = 2 (d- 1)nVoOn(X ) (C8) 

where Vo is the integral of 2 0, so the integral of the deltalike potential is 
Vo 2(a-1)", very small if n-~ - ~  and d >  l, but not small enough to keep 
the potential bounded, Vd~> 1. 

This divergence of the maximum of the potential forces us to abandon 
the formalism of the initial particle fields and to adopt, even in d =  l, the 
quasiparticle formalism. 

A C K N O W L E D G M E N T S  

We learnt from G. Felder the formulation of the anomalous beta func- 
tion in the scalar field case. The connection between the effective potential 
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and the truncated Schwinger functions we learnt from L. Rosen in the 
scalar field case. 
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